geos.txt 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221
  1. ========
  2. GEOS API
  3. ========
  4. .. module:: django.contrib.gis.geos
  5. :synopsis: GeoDjango's high-level interface to the GEOS library.
  6. Background
  7. ==========
  8. What is GEOS?
  9. -------------
  10. `GEOS`__ stands for **Geometry Engine - Open Source**,
  11. and is a C++ library, ported from the `Java Topology Suite`__. GEOS
  12. implements the OpenGIS `Simple Features for SQL`__ spatial predicate functions
  13. and spatial operators. GEOS, now an OSGeo project, was initially developed and
  14. maintained by `Refractions Research`__ of Victoria, Canada.
  15. __ https://libgeos.org/
  16. __ https://sourceforge.net/projects/jts-topo-suite/
  17. __ https://www.ogc.org/standard/sfs/
  18. __ http://www.refractions.net/
  19. Features
  20. --------
  21. GeoDjango implements a high-level Python wrapper for the GEOS library, its
  22. features include:
  23. * A BSD-licensed interface to the GEOS geometry routines, implemented purely
  24. in Python using ``ctypes``.
  25. * Loosely-coupled to GeoDjango. For example, :class:`GEOSGeometry` objects
  26. may be used outside of a Django project/application. In other words,
  27. no need to have :envvar:`DJANGO_SETTINGS_MODULE` set or use a database, etc.
  28. * Mutability: :class:`GEOSGeometry` objects may be modified.
  29. * Cross-platform and tested; compatible with Windows, Linux, Solaris, and
  30. macOS platforms.
  31. .. _geos-tutorial:
  32. Tutorial
  33. ========
  34. This section contains a brief introduction and tutorial to using
  35. :class:`GEOSGeometry` objects.
  36. Creating a Geometry
  37. -------------------
  38. :class:`GEOSGeometry` objects may be created in a few ways. The first is
  39. to simply instantiate the object on some spatial input -- the following
  40. are examples of creating the same geometry from WKT, HEX, WKB, and GeoJSON:
  41. .. code-block:: pycon
  42. >>> from django.contrib.gis.geos import GEOSGeometry
  43. >>> pnt = GEOSGeometry("POINT(5 23)") # WKT
  44. >>> pnt = GEOSGeometry("010100000000000000000014400000000000003740") # HEX
  45. >>> pnt = GEOSGeometry(
  46. ... memoryview(
  47. ... b"\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@"
  48. ... )
  49. ... ) # WKB
  50. >>> pnt = GEOSGeometry(
  51. ... '{ "type": "Point", "coordinates": [ 5.000000, 23.000000 ] }'
  52. ... ) # GeoJSON
  53. Another option is to use the constructor for the specific geometry type
  54. that you wish to create. For example, a :class:`Point` object may be
  55. created by passing in the X and Y coordinates into its constructor:
  56. .. code-block:: pycon
  57. >>> from django.contrib.gis.geos import Point
  58. >>> pnt = Point(5, 23)
  59. All these constructors take the keyword argument ``srid``. For example:
  60. .. code-block:: pycon
  61. >>> from django.contrib.gis.geos import GEOSGeometry, LineString, Point
  62. >>> print(GEOSGeometry("POINT (0 0)", srid=4326))
  63. SRID=4326;POINT (0 0)
  64. >>> print(LineString((0, 0), (1, 1), srid=4326))
  65. SRID=4326;LINESTRING (0 0, 1 1)
  66. >>> print(Point(0, 0, srid=32140))
  67. SRID=32140;POINT (0 0)
  68. Finally, there is the :func:`fromfile` factory method which returns a
  69. :class:`GEOSGeometry` object from a file:
  70. .. code-block:: pycon
  71. >>> from django.contrib.gis.geos import fromfile
  72. >>> pnt = fromfile("/path/to/pnt.wkt")
  73. >>> pnt = fromfile(open("/path/to/pnt.wkt"))
  74. .. _geos-exceptions-in-logfile:
  75. .. admonition:: My logs are filled with GEOS-related errors
  76. You find many ``TypeError`` or ``AttributeError`` exceptions filling your
  77. web server's log files. This generally means that you are creating GEOS
  78. objects at the top level of some of your Python modules. Then, due to a race
  79. condition in the garbage collector, your module is garbage collected before
  80. the GEOS object. To prevent this, create :class:`GEOSGeometry` objects
  81. inside the local scope of your functions/methods.
  82. Geometries are Pythonic
  83. -----------------------
  84. :class:`GEOSGeometry` objects are 'Pythonic', in other words components may
  85. be accessed, modified, and iterated over using standard Python conventions.
  86. For example, you can iterate over the coordinates in a :class:`Point`:
  87. .. code-block:: pycon
  88. >>> pnt = Point(5, 23)
  89. >>> [coord for coord in pnt]
  90. [5.0, 23.0]
  91. With any geometry object, the :attr:`GEOSGeometry.coords` property
  92. may be used to get the geometry coordinates as a Python tuple:
  93. .. code-block:: pycon
  94. >>> pnt.coords
  95. (5.0, 23.0)
  96. You can get/set geometry components using standard Python indexing
  97. techniques. However, what is returned depends on the geometry type
  98. of the object. For example, indexing on a :class:`LineString`
  99. returns a coordinate tuple:
  100. .. code-block:: pycon
  101. >>> from django.contrib.gis.geos import LineString
  102. >>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
  103. >>> line[0]
  104. (0.0, 0.0)
  105. >>> line[-2]
  106. (50.0, 0.0)
  107. Whereas indexing on a :class:`Polygon` will return the ring
  108. (a :class:`LinearRing` object) corresponding to the index:
  109. .. code-block:: pycon
  110. >>> from django.contrib.gis.geos import Polygon
  111. >>> poly = Polygon(((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)))
  112. >>> poly[0]
  113. <LinearRing object at 0x1044395b0>
  114. >>> poly[0][-2] # second-to-last coordinate of external ring
  115. (50.0, 0.0)
  116. In addition, coordinates/components of the geometry may added or modified,
  117. just like a Python list:
  118. .. code-block:: pycon
  119. >>> line[0] = (1.0, 1.0)
  120. >>> line.pop()
  121. (0.0, 0.0)
  122. >>> line.append((1.0, 1.0))
  123. >>> line.coords
  124. ((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))
  125. Geometries support set-like operators:
  126. .. code-block:: pycon
  127. >>> from django.contrib.gis.geos import LineString
  128. >>> ls1 = LineString((0, 0), (2, 2))
  129. >>> ls2 = LineString((1, 1), (3, 3))
  130. >>> print(ls1 | ls2) # equivalent to `ls1.union(ls2)`
  131. MULTILINESTRING ((0 0, 1 1), (1 1, 2 2), (2 2, 3 3))
  132. >>> print(ls1 & ls2) # equivalent to `ls1.intersection(ls2)`
  133. LINESTRING (1 1, 2 2)
  134. >>> print(ls1 - ls2) # equivalent to `ls1.difference(ls2)`
  135. LINESTRING(0 0, 1 1)
  136. >>> print(ls1 ^ ls2) # equivalent to `ls1.sym_difference(ls2)`
  137. MULTILINESTRING ((0 0, 1 1), (2 2, 3 3))
  138. .. admonition:: Equality operator doesn't check spatial equality
  139. The :class:`~GEOSGeometry` equality operator uses
  140. :meth:`~GEOSGeometry.equals_exact`, not :meth:`~GEOSGeometry.equals`, i.e.
  141. it requires the compared geometries to have the same coordinates in the
  142. same positions with the same SRIDs:
  143. .. code-block:: pycon
  144. >>> from django.contrib.gis.geos import LineString
  145. >>> ls1 = LineString((0, 0), (1, 1))
  146. >>> ls2 = LineString((1, 1), (0, 0))
  147. >>> ls3 = LineString((1, 1), (0, 0), srid=4326)
  148. >>> ls1.equals(ls2)
  149. True
  150. >>> ls1 == ls2
  151. False
  152. >>> ls3 == ls2 # different SRIDs
  153. False
  154. Geometry Objects
  155. ================
  156. ``GEOSGeometry``
  157. ----------------
  158. .. class:: GEOSGeometry(geo_input, srid=None)
  159. :param geo_input: Geometry input value (string or :class:`memoryview`)
  160. :param srid: spatial reference identifier
  161. :type srid: int
  162. This is the base class for all GEOS geometry objects. It initializes on the
  163. given ``geo_input`` argument, and then assumes the proper geometry subclass
  164. (e.g., ``GEOSGeometry('POINT(1 1)')`` will create a :class:`Point` object).
  165. The ``srid`` parameter, if given, is set as the SRID of the created geometry if
  166. ``geo_input`` doesn't have an SRID. If different SRIDs are provided through the
  167. ``geo_input`` and ``srid`` parameters, ``ValueError`` is raised:
  168. .. code-block:: pycon
  169. >>> from django.contrib.gis.geos import GEOSGeometry
  170. >>> GEOSGeometry("POINT EMPTY", srid=4326).ewkt
  171. 'SRID=4326;POINT EMPTY'
  172. >>> GEOSGeometry("SRID=4326;POINT EMPTY", srid=4326).ewkt
  173. 'SRID=4326;POINT EMPTY'
  174. >>> GEOSGeometry("SRID=1;POINT EMPTY", srid=4326)
  175. Traceback (most recent call last):
  176. ...
  177. ValueError: Input geometry already has SRID: 1.
  178. The following input formats, along with their corresponding Python types,
  179. are accepted:
  180. ======================= ==============
  181. Format Input Type
  182. ======================= ==============
  183. WKT / EWKT ``str``
  184. HEX / HEXEWKB ``str``
  185. WKB / EWKB ``memoryview``
  186. :rfc:`GeoJSON <7946>` ``str``
  187. ======================= ==============
  188. For the GeoJSON format, the SRID is set based on the ``crs`` member. If ``crs``
  189. isn't provided, the SRID defaults to 4326.
  190. .. classmethod:: GEOSGeometry.from_gml(gml_string)
  191. Constructs a :class:`GEOSGeometry` from the given GML string.
  192. Properties
  193. ~~~~~~~~~~
  194. .. attribute:: GEOSGeometry.coords
  195. Returns the coordinates of the geometry as a tuple.
  196. .. attribute:: GEOSGeometry.dims
  197. Returns the dimension of the geometry:
  198. * ``0`` for :class:`Point`\s and :class:`MultiPoint`\s
  199. * ``1`` for :class:`LineString`\s and :class:`MultiLineString`\s
  200. * ``2`` for :class:`Polygon`\s and :class:`MultiPolygon`\s
  201. * ``-1`` for empty :class:`GeometryCollection`\s
  202. * the maximum dimension of its elements for non-empty
  203. :class:`GeometryCollection`\s
  204. .. attribute:: GEOSGeometry.empty
  205. Returns whether or not the set of points in the geometry is empty.
  206. .. attribute:: GEOSGeometry.geom_type
  207. Returns a string corresponding to the type of geometry. For example:
  208. .. code-block:: pycon
  209. >>> pnt = GEOSGeometry("POINT(5 23)")
  210. >>> pnt.geom_type
  211. 'Point'
  212. .. attribute:: GEOSGeometry.geom_typeid
  213. Returns the GEOS geometry type identification number. The following table
  214. shows the value for each geometry type:
  215. =========================== ========
  216. Geometry ID
  217. =========================== ========
  218. :class:`Point` 0
  219. :class:`LineString` 1
  220. :class:`LinearRing` 2
  221. :class:`Polygon` 3
  222. :class:`MultiPoint` 4
  223. :class:`MultiLineString` 5
  224. :class:`MultiPolygon` 6
  225. :class:`GeometryCollection` 7
  226. =========================== ========
  227. .. attribute:: GEOSGeometry.num_coords
  228. Returns the number of coordinates in the geometry.
  229. .. attribute:: GEOSGeometry.num_geom
  230. Returns the number of geometries in this geometry. In other words, will
  231. return 1 on anything but geometry collections.
  232. .. attribute:: GEOSGeometry.hasz
  233. Returns a boolean indicating whether the geometry is three-dimensional.
  234. .. attribute:: GEOSGeometry.ring
  235. Returns a boolean indicating whether the geometry is a ``LinearRing``.
  236. .. attribute:: GEOSGeometry.simple
  237. Returns a boolean indicating whether the geometry is 'simple'. A geometry
  238. is simple if and only if it does not intersect itself (except at boundary
  239. points). For example, a :class:`LineString` object is not simple if it
  240. intersects itself. Thus, :class:`LinearRing` and :class:`Polygon` objects
  241. are always simple because they cannot intersect themselves, by definition.
  242. .. attribute:: GEOSGeometry.valid
  243. Returns a boolean indicating whether the geometry is valid.
  244. .. attribute:: GEOSGeometry.valid_reason
  245. Returns a string describing the reason why a geometry is invalid.
  246. .. attribute:: GEOSGeometry.srid
  247. Property that may be used to retrieve or set the SRID associated with the
  248. geometry. For example:
  249. .. code-block:: pycon
  250. >>> pnt = Point(5, 23)
  251. >>> print(pnt.srid)
  252. None
  253. >>> pnt.srid = 4326
  254. >>> pnt.srid
  255. 4326
  256. Output Properties
  257. ~~~~~~~~~~~~~~~~~
  258. The properties in this section export the :class:`GEOSGeometry` object into
  259. a different. This output may be in the form of a string, buffer, or even
  260. another object.
  261. .. attribute:: GEOSGeometry.ewkt
  262. Returns the "extended" Well-Known Text of the geometry. This representation
  263. is specific to PostGIS and is a superset of the OGC WKT standard. [#fnogc]_
  264. Essentially the SRID is prepended to the WKT representation, for example
  265. ``SRID=4326;POINT(5 23)``.
  266. .. note::
  267. The output from this property does not include the 3dm, 3dz, and 4d
  268. information that PostGIS supports in its EWKT representations.
  269. .. attribute:: GEOSGeometry.hex
  270. Returns the WKB of this Geometry in hexadecimal form. Please note
  271. that the SRID value is not included in this representation
  272. because it is not a part of the OGC specification (use the
  273. :attr:`GEOSGeometry.hexewkb` property instead).
  274. .. attribute:: GEOSGeometry.hexewkb
  275. Returns the EWKB of this Geometry in hexadecimal form. This is an
  276. extension of the WKB specification that includes the SRID value
  277. that are a part of this geometry.
  278. .. attribute:: GEOSGeometry.json
  279. Returns the GeoJSON representation of the geometry. Note that the result is
  280. not a complete GeoJSON structure but only the ``geometry`` key content of a
  281. GeoJSON structure. See also :doc:`/ref/contrib/gis/serializers`.
  282. .. attribute:: GEOSGeometry.geojson
  283. Alias for :attr:`GEOSGeometry.json`.
  284. .. attribute:: GEOSGeometry.kml
  285. Returns a `KML`__ (Keyhole Markup Language) representation of the
  286. geometry. This should only be used for geometries with an SRID of
  287. 4326 (WGS84), but this restriction is not enforced.
  288. .. attribute:: GEOSGeometry.ogr
  289. Returns an :class:`~django.contrib.gis.gdal.OGRGeometry` object
  290. corresponding to the GEOS geometry.
  291. .. _wkb:
  292. .. attribute:: GEOSGeometry.wkb
  293. Returns the WKB (Well-Known Binary) representation of this Geometry
  294. as a Python buffer. SRID value is not included, use the
  295. :attr:`GEOSGeometry.ewkb` property instead.
  296. .. _ewkb:
  297. .. attribute:: GEOSGeometry.ewkb
  298. Return the EWKB representation of this Geometry as a Python buffer.
  299. This is an extension of the WKB specification that includes any SRID
  300. value that are a part of this geometry.
  301. .. attribute:: GEOSGeometry.wkt
  302. Returns the Well-Known Text of the geometry (an OGC standard).
  303. __ https://developers.google.com/kml/documentation/
  304. Spatial Predicate Methods
  305. ~~~~~~~~~~~~~~~~~~~~~~~~~
  306. All of the following spatial predicate methods take another
  307. :class:`GEOSGeometry` instance (``other``) as a parameter, and
  308. return a boolean.
  309. .. method:: GEOSGeometry.contains(other)
  310. Returns ``True`` if :meth:`other.within(this) <GEOSGeometry.within>` returns
  311. ``True``.
  312. .. method:: GEOSGeometry.covers(other)
  313. Returns ``True`` if this geometry covers the specified geometry.
  314. The ``covers`` predicate has the following equivalent definitions:
  315. * Every point of the other geometry is a point of this geometry.
  316. * The `DE-9IM`_ Intersection Matrix for the two geometries is
  317. ``T*****FF*``, ``*T****FF*``, ``***T**FF*``, or ``****T*FF*``.
  318. If either geometry is empty, returns ``False``.
  319. This predicate is similar to :meth:`GEOSGeometry.contains`, but is more
  320. inclusive (i.e. returns ``True`` for more cases). In particular, unlike
  321. :meth:`~GEOSGeometry.contains` it does not distinguish between points in the
  322. boundary and in the interior of geometries. For most situations,
  323. ``covers()`` should be preferred to :meth:`~GEOSGeometry.contains`. As an
  324. added benefit, ``covers()`` is more amenable to optimization and hence
  325. should outperform :meth:`~GEOSGeometry.contains`.
  326. .. _DE-9IM: https://en.wikipedia.org/wiki/DE-9IM
  327. .. method:: GEOSGeometry.crosses(other)
  328. Returns ``True`` if the DE-9IM intersection matrix for the two Geometries
  329. is ``T*T******`` (for a point and a curve,a point and an area or a line
  330. and an area) ``0********`` (for two curves).
  331. .. method:: GEOSGeometry.disjoint(other)
  332. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  333. is ``FF*FF****``.
  334. .. method:: GEOSGeometry.equals(other)
  335. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  336. is ``T*F**FFF*``.
  337. .. method:: GEOSGeometry.equals_exact(other, tolerance=0)
  338. Returns true if the two geometries are exactly equal, up to a
  339. specified tolerance. The ``tolerance`` value should be a floating
  340. point number representing the error tolerance in the comparison, e.g.,
  341. ``poly1.equals_exact(poly2, 0.001)`` will compare equality to within
  342. one thousandth of a unit.
  343. .. method:: GEOSGeometry.equals_identical(other)
  344. Returns ``True`` if the two geometries are point-wise equivalent by
  345. checking that the structure, ordering, and values of all vertices are
  346. identical in all dimensions. ``NaN`` values are considered to be equal to
  347. other ``NaN`` values. Requires GEOS 3.12.
  348. .. method:: GEOSGeometry.intersects(other)
  349. Returns ``True`` if :meth:`GEOSGeometry.disjoint` is ``False``.
  350. .. method:: GEOSGeometry.overlaps(other)
  351. Returns true if the DE-9IM intersection matrix for the two geometries
  352. is ``T*T***T**`` (for two points or two surfaces) ``1*T***T**``
  353. (for two curves).
  354. .. method:: GEOSGeometry.relate_pattern(other, pattern)
  355. Returns ``True`` if the elements in the DE-9IM intersection matrix
  356. for this geometry and the other matches the given ``pattern`` --
  357. a string of nine characters from the alphabet: {``T``, ``F``, ``*``, ``0``}.
  358. .. method:: GEOSGeometry.touches(other)
  359. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  360. is ``FT*******``, ``F**T*****`` or ``F***T****``.
  361. .. method:: GEOSGeometry.within(other)
  362. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  363. is ``T*F**F***``.
  364. Topological Methods
  365. ~~~~~~~~~~~~~~~~~~~
  366. .. method:: GEOSGeometry.buffer(width, quadsegs=8)
  367. Returns a :class:`GEOSGeometry` that represents all points whose distance
  368. from this geometry is less than or equal to the given ``width``. The
  369. optional ``quadsegs`` keyword sets the number of segments used to
  370. approximate a quarter circle (defaults is 8).
  371. .. method:: GEOSGeometry.buffer_with_style(width, quadsegs=8, end_cap_style=1, join_style=1, mitre_limit=5.0)
  372. Same as :meth:`buffer`, but allows customizing the style of the buffer.
  373. * ``end_cap_style`` can be round (``1``), flat (``2``), or square (``3``).
  374. * ``join_style`` can be round (``1``), mitre (``2``), or bevel (``3``).
  375. * Mitre ratio limit (``mitre_limit``) only affects mitered join style.
  376. .. method:: GEOSGeometry.difference(other)
  377. Returns a :class:`GEOSGeometry` representing the points making up this
  378. geometry that do not make up other.
  379. .. method:: GEOSGeometry.interpolate(distance)
  380. .. method:: GEOSGeometry.interpolate_normalized(distance)
  381. Given a distance (float), returns the point (or closest point) within the
  382. geometry (:class:`LineString` or :class:`MultiLineString`) at that distance.
  383. The normalized version takes the distance as a float between 0 (origin) and
  384. 1 (endpoint).
  385. Reverse of :meth:`GEOSGeometry.project`.
  386. .. method:: GEOSGeometry.intersection(other)
  387. Returns a :class:`GEOSGeometry` representing the points shared by this
  388. geometry and other.
  389. .. method:: GEOSGeometry.project(point)
  390. .. method:: GEOSGeometry.project_normalized(point)
  391. Returns the distance (float) from the origin of the geometry
  392. (:class:`LineString` or :class:`MultiLineString`) to the point projected on
  393. the geometry (that is to a point of the line the closest to the given
  394. point). The normalized version returns the distance as a float between 0
  395. (origin) and 1 (endpoint).
  396. Reverse of :meth:`GEOSGeometry.interpolate`.
  397. .. method:: GEOSGeometry.relate(other)
  398. Returns the DE-9IM intersection matrix (a string) representing the
  399. topological relationship between this geometry and the other.
  400. .. method:: GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)
  401. Returns a new :class:`GEOSGeometry`, simplified to the specified tolerance
  402. using the Douglas-Peucker algorithm. A higher tolerance value implies
  403. fewer points in the output. If no tolerance is provided, it defaults to 0.
  404. By default, this function does not preserve topology. For example,
  405. :class:`Polygon` objects can be split, be collapsed into lines, or
  406. disappear. :class:`Polygon` holes can be created or disappear, and lines may
  407. cross. By specifying ``preserve_topology=True``, the result will have the
  408. same dimension and number of components as the input; this is significantly
  409. slower, however.
  410. .. method:: GEOSGeometry.sym_difference(other)
  411. Returns a :class:`GEOSGeometry` combining the points in this geometry
  412. not in other, and the points in other not in this geometry.
  413. .. method:: GEOSGeometry.union(other)
  414. Returns a :class:`GEOSGeometry` representing all the points in this
  415. geometry and the other.
  416. Topological Properties
  417. ~~~~~~~~~~~~~~~~~~~~~~
  418. .. attribute:: GEOSGeometry.boundary
  419. Returns the boundary as a newly allocated Geometry object.
  420. .. attribute:: GEOSGeometry.centroid
  421. Returns a :class:`Point` object representing the geometric center of
  422. the geometry. The point is not guaranteed to be on the interior
  423. of the geometry.
  424. .. attribute:: GEOSGeometry.convex_hull
  425. Returns the smallest :class:`Polygon` that contains all the points in
  426. the geometry.
  427. .. attribute:: GEOSGeometry.envelope
  428. Returns a :class:`Polygon` that represents the bounding envelope of
  429. this geometry. Note that it can also return a :class:`Point` if the input
  430. geometry is a point.
  431. .. attribute:: GEOSGeometry.point_on_surface
  432. Computes and returns a :class:`Point` guaranteed to be on the interior
  433. of this geometry.
  434. .. attribute:: GEOSGeometry.unary_union
  435. Computes the union of all the elements of this geometry.
  436. The result obeys the following contract:
  437. * Unioning a set of :class:`LineString`\s has the effect of fully noding and
  438. dissolving the linework.
  439. * Unioning a set of :class:`Polygon`\s will always return a :class:`Polygon`
  440. or :class:`MultiPolygon` geometry (unlike :meth:`GEOSGeometry.union`,
  441. which may return geometries of lower dimension if a topology collapse
  442. occurs).
  443. Other Properties & Methods
  444. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  445. .. attribute:: GEOSGeometry.area
  446. This property returns the area of the Geometry.
  447. .. attribute:: GEOSGeometry.extent
  448. This property returns the extent of this geometry as a 4-tuple,
  449. consisting of ``(xmin, ymin, xmax, ymax)``.
  450. .. method:: GEOSGeometry.clone()
  451. This method returns a :class:`GEOSGeometry` that is a clone of the original.
  452. .. method:: GEOSGeometry.distance(geom)
  453. Returns the distance between the closest points on this geometry and the
  454. given ``geom`` (another :class:`GEOSGeometry` object).
  455. .. note::
  456. GEOS distance calculations are linear -- in other words, GEOS does not
  457. perform a spherical calculation even if the SRID specifies a geographic
  458. coordinate system.
  459. .. attribute:: GEOSGeometry.length
  460. Returns the length of this geometry (e.g., 0 for a :class:`Point`,
  461. the length of a :class:`LineString`, or the circumference of
  462. a :class:`Polygon`).
  463. .. attribute:: GEOSGeometry.prepared
  464. Returns a GEOS ``PreparedGeometry`` for the contents of this geometry.
  465. ``PreparedGeometry`` objects are optimized for the contains, intersects,
  466. covers, crosses, disjoint, overlaps, touches and within operations. Refer to
  467. the :ref:`prepared-geometries` documentation for more information.
  468. .. attribute:: GEOSGeometry.srs
  469. Returns a :class:`~django.contrib.gis.gdal.SpatialReference` object
  470. corresponding to the SRID of the geometry or ``None``.
  471. .. method:: GEOSGeometry.transform(ct, clone=False)
  472. Transforms the geometry according to the given coordinate transformation
  473. parameter (``ct``), which may be an integer SRID, spatial reference WKT
  474. string, a PROJ string, a :class:`~django.contrib.gis.gdal.SpatialReference`
  475. object, or a :class:`~django.contrib.gis.gdal.CoordTransform` object. By
  476. default, the geometry is transformed in-place and nothing is returned.
  477. However if the ``clone`` keyword is set, then the geometry is not modified
  478. and a transformed clone of the geometry is returned instead.
  479. .. note::
  480. Raises :class:`~django.contrib.gis.geos.GEOSException` if GDAL is not
  481. available or if the geometry's SRID is ``None`` or less than 0. It
  482. doesn't impose any constraints on the geometry's SRID if called with a
  483. :class:`~django.contrib.gis.gdal.CoordTransform` object.
  484. .. method:: GEOSGeometry.make_valid()
  485. Returns a valid :class:`GEOSGeometry` equivalent, trying not to lose any of
  486. the input vertices. If the geometry is already valid, it is returned
  487. untouched. This is similar to the
  488. :class:`~django.contrib.gis.db.models.functions.MakeValid` database
  489. function. Requires GEOS 3.8.
  490. .. method:: GEOSGeometry.normalize(clone=False)
  491. Converts this geometry to canonical form. If the ``clone`` keyword is set,
  492. then the geometry is not modified and a normalized clone of the geometry is
  493. returned instead:
  494. .. code-block:: pycon
  495. >>> g = MultiPoint(Point(0, 0), Point(2, 2), Point(1, 1))
  496. >>> print(g)
  497. MULTIPOINT (0 0, 2 2, 1 1)
  498. >>> g.normalize()
  499. >>> print(g)
  500. MULTIPOINT (2 2, 1 1, 0 0)
  501. ``Point``
  502. ---------
  503. .. class:: Point(x=None, y=None, z=None, srid=None)
  504. ``Point`` objects are instantiated using arguments that represent the
  505. component coordinates of the point or with a single sequence coordinates.
  506. For example, the following are equivalent:
  507. .. code-block:: pycon
  508. >>> pnt = Point(5, 23)
  509. >>> pnt = Point([5, 23])
  510. Empty ``Point`` objects may be instantiated by passing no arguments or an
  511. empty sequence. The following are equivalent:
  512. .. code-block:: pycon
  513. >>> pnt = Point()
  514. >>> pnt = Point([])
  515. ``LineString``
  516. --------------
  517. .. class:: LineString(*args, **kwargs)
  518. ``LineString`` objects are instantiated using arguments that are either a
  519. sequence of coordinates or :class:`Point` objects. For example, the
  520. following are equivalent:
  521. .. code-block:: pycon
  522. >>> ls = LineString((0, 0), (1, 1))
  523. >>> ls = LineString(Point(0, 0), Point(1, 1))
  524. In addition, ``LineString`` objects may also be created by passing in a
  525. single sequence of coordinate or :class:`Point` objects:
  526. .. code-block:: pycon
  527. >>> ls = LineString(((0, 0), (1, 1)))
  528. >>> ls = LineString([Point(0, 0), Point(1, 1)])
  529. Empty ``LineString`` objects may be instantiated by passing no arguments
  530. or an empty sequence. The following are equivalent:
  531. .. code-block:: pycon
  532. >>> ls = LineString()
  533. >>> ls = LineString([])
  534. .. attribute:: closed
  535. Returns whether or not this ``LineString`` is closed.
  536. ``LinearRing``
  537. --------------
  538. .. class:: LinearRing(*args, **kwargs)
  539. ``LinearRing`` objects are constructed in the exact same way as
  540. :class:`LineString` objects, however the coordinates must be *closed*, in
  541. other words, the first coordinates must be the same as the last
  542. coordinates. For example:
  543. .. code-block:: pycon
  544. >>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
  545. Notice that ``(0, 0)`` is the first and last coordinate -- if they were not
  546. equal, an error would be raised.
  547. .. attribute:: is_counterclockwise
  548. Returns whether this ``LinearRing`` is counterclockwise.
  549. ``Polygon``
  550. -----------
  551. .. class:: Polygon(*args, **kwargs)
  552. ``Polygon`` objects may be instantiated by passing in parameters that
  553. represent the rings of the polygon. The parameters must either be
  554. :class:`LinearRing` instances, or a sequence that may be used to construct a
  555. :class:`LinearRing`:
  556. .. code-block:: pycon
  557. >>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
  558. >>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
  559. >>> poly = Polygon(ext_coords, int_coords)
  560. >>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))
  561. .. classmethod:: from_bbox(bbox)
  562. Returns a polygon object from the given bounding-box, a 4-tuple
  563. comprising ``(xmin, ymin, xmax, ymax)``.
  564. .. attribute:: num_interior_rings
  565. Returns the number of interior rings in this geometry.
  566. .. admonition:: Comparing Polygons
  567. Note that it is possible to compare ``Polygon`` objects directly with ``<``
  568. or ``>``, but as the comparison is made through Polygon's
  569. :class:`LineString`, it does not mean much (but is consistent and quick).
  570. You can always force the comparison with the :attr:`~GEOSGeometry.area`
  571. property:
  572. .. code-block:: pycon
  573. >>> if poly_1.area > poly_2.area:
  574. ... pass
  575. ...
  576. .. _geos-geometry-collections:
  577. Geometry Collections
  578. ====================
  579. ``MultiPoint``
  580. --------------
  581. .. class:: MultiPoint(*args, **kwargs)
  582. ``MultiPoint`` objects may be instantiated by passing in :class:`Point`
  583. objects as arguments, or a single sequence of :class:`Point` objects:
  584. .. code-block:: pycon
  585. >>> mp = MultiPoint(Point(0, 0), Point(1, 1))
  586. >>> mp = MultiPoint((Point(0, 0), Point(1, 1)))
  587. ``MultiLineString``
  588. -------------------
  589. .. class:: MultiLineString(*args, **kwargs)
  590. ``MultiLineString`` objects may be instantiated by passing in
  591. :class:`LineString` objects as arguments, or a single sequence of
  592. :class:`LineString` objects:
  593. .. code-block:: pycon
  594. >>> ls1 = LineString((0, 0), (1, 1))
  595. >>> ls2 = LineString((2, 2), (3, 3))
  596. >>> mls = MultiLineString(ls1, ls2)
  597. >>> mls = MultiLineString([ls1, ls2])
  598. .. attribute:: merged
  599. Returns a :class:`LineString` representing the line merge of
  600. all the components in this ``MultiLineString``.
  601. .. attribute:: closed
  602. Returns ``True`` if and only if all elements are closed.
  603. ``MultiPolygon``
  604. ----------------
  605. .. class:: MultiPolygon(*args, **kwargs)
  606. ``MultiPolygon`` objects may be instantiated by passing :class:`Polygon`
  607. objects as arguments, or a single sequence of :class:`Polygon` objects:
  608. .. code-block:: pycon
  609. >>> p1 = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
  610. >>> p2 = Polygon(((1, 1), (1, 2), (2, 2), (1, 1)))
  611. >>> mp = MultiPolygon(p1, p2)
  612. >>> mp = MultiPolygon([p1, p2])
  613. ``GeometryCollection``
  614. ----------------------
  615. .. class:: GeometryCollection(*args, **kwargs)
  616. ``GeometryCollection`` objects may be instantiated by passing in other
  617. :class:`GEOSGeometry` as arguments, or a single sequence of
  618. :class:`GEOSGeometry` objects:
  619. .. code-block:: pycon
  620. >>> poly = Polygon(((0, 0), (0, 1), (1, 1), (0, 0)))
  621. >>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
  622. >>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))
  623. .. _prepared-geometries:
  624. Prepared Geometries
  625. ===================
  626. In order to obtain a prepared geometry, access the
  627. :attr:`GEOSGeometry.prepared` property. Once you have a
  628. ``PreparedGeometry`` instance its spatial predicate methods, listed below,
  629. may be used with other ``GEOSGeometry`` objects. An operation with a prepared
  630. geometry can be orders of magnitude faster -- the more complex the geometry
  631. that is prepared, the larger the speedup in the operation. For more information,
  632. please consult the `GEOS wiki page on prepared geometries <https://trac.osgeo.org/geos/wiki/PreparedGeometry>`_.
  633. For example:
  634. .. code-block:: pycon
  635. >>> from django.contrib.gis.geos import Point, Polygon
  636. >>> poly = Polygon.from_bbox((0, 0, 5, 5))
  637. >>> prep_poly = poly.prepared
  638. >>> prep_poly.contains(Point(2.5, 2.5))
  639. True
  640. ``PreparedGeometry``
  641. --------------------
  642. .. class:: PreparedGeometry
  643. All methods on ``PreparedGeometry`` take an ``other`` argument, which
  644. must be a :class:`GEOSGeometry` instance.
  645. .. method:: contains(other)
  646. .. method:: contains_properly(other)
  647. .. method:: covers(other)
  648. .. method:: crosses(other)
  649. .. method:: disjoint(other)
  650. .. method:: intersects(other)
  651. .. method:: overlaps(other)
  652. .. method:: touches(other)
  653. .. method:: within(other)
  654. Geometry Factories
  655. ==================
  656. .. function:: fromfile(file_h)
  657. :param file_h: input file that contains spatial data
  658. :type file_h: a Python ``file`` object or a string path to the file
  659. :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the file
  660. Example:
  661. .. code-block:: pycon
  662. >>> from django.contrib.gis.geos import fromfile
  663. >>> g = fromfile("/home/bob/geom.wkt")
  664. .. function:: fromstr(string, srid=None)
  665. :param string: string that contains spatial data
  666. :type string: str
  667. :param srid: spatial reference identifier
  668. :type srid: int
  669. :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the string
  670. ``fromstr(string, srid)`` is equivalent to
  671. :class:`GEOSGeometry(string, srid) <GEOSGeometry>`.
  672. Example:
  673. .. code-block:: pycon
  674. >>> from django.contrib.gis.geos import fromstr
  675. >>> pnt = fromstr("POINT(-90.5 29.5)", srid=4326)
  676. I/O Objects
  677. ===========
  678. Reader Objects
  679. --------------
  680. The reader I/O classes return a :class:`GEOSGeometry` instance from the WKB
  681. and/or WKT input given to their ``read(geom)`` method.
  682. .. class:: WKBReader
  683. Example:
  684. .. code-block:: pycon
  685. >>> from django.contrib.gis.geos import WKBReader
  686. >>> wkb_r = WKBReader()
  687. >>> wkb_r.read("0101000000000000000000F03F000000000000F03F")
  688. <Point object at 0x103a88910>
  689. .. class:: WKTReader
  690. Example:
  691. .. code-block:: pycon
  692. >>> from django.contrib.gis.geos import WKTReader
  693. >>> wkt_r = WKTReader()
  694. >>> wkt_r.read("POINT(1 1)")
  695. <Point object at 0x103a88b50>
  696. Writer Objects
  697. --------------
  698. All writer objects have a ``write(geom)`` method that returns either the
  699. WKB or WKT of the given geometry. In addition, :class:`WKBWriter` objects
  700. also have properties that may be used to change the byte order, and or
  701. include the SRID value (in other words, EWKB).
  702. .. class:: WKBWriter(dim=2)
  703. ``WKBWriter`` provides the most control over its output. By default it
  704. returns OGC-compliant WKB when its ``write`` method is called. However,
  705. it has properties that allow for the creation of EWKB, a superset of the
  706. WKB standard that includes additional information. See the
  707. :attr:`WKBWriter.outdim` documentation for more details about the ``dim``
  708. argument.
  709. .. method:: WKBWriter.write(geom)
  710. Returns the WKB of the given geometry as a Python ``buffer`` object.
  711. Example:
  712. .. code-block:: pycon
  713. >>> from django.contrib.gis.geos import Point, WKBWriter
  714. >>> pnt = Point(1, 1)
  715. >>> wkb_w = WKBWriter()
  716. >>> wkb_w.write(pnt)
  717. <read-only buffer for 0x103a898f0, size -1, offset 0 at 0x103a89930>
  718. .. method:: WKBWriter.write_hex(geom)
  719. Returns WKB of the geometry in hexadecimal. Example:
  720. .. code-block:: pycon
  721. >>> from django.contrib.gis.geos import Point, WKBWriter
  722. >>> pnt = Point(1, 1)
  723. >>> wkb_w = WKBWriter()
  724. >>> wkb_w.write_hex(pnt)
  725. '0101000000000000000000F03F000000000000F03F'
  726. .. attribute:: WKBWriter.byteorder
  727. This property may be set to change the byte-order of the geometry
  728. representation.
  729. =============== =================================================
  730. Byteorder Value Description
  731. =============== =================================================
  732. 0 Big Endian (e.g., compatible with RISC systems)
  733. 1 Little Endian (e.g., compatible with x86 systems)
  734. =============== =================================================
  735. Example:
  736. .. code-block:: pycon
  737. >>> from django.contrib.gis.geos import Point, WKBWriter
  738. >>> wkb_w = WKBWriter()
  739. >>> pnt = Point(1, 1)
  740. >>> wkb_w.write_hex(pnt)
  741. '0101000000000000000000F03F000000000000F03F'
  742. >>> wkb_w.byteorder = 0
  743. '00000000013FF00000000000003FF0000000000000'
  744. .. attribute:: WKBWriter.outdim
  745. This property may be set to change the output dimension of the geometry
  746. representation. In other words, if you have a 3D geometry then set to 3
  747. so that the Z value is included in the WKB.
  748. ============ ===========================
  749. Outdim Value Description
  750. ============ ===========================
  751. 2 The default, output 2D WKB.
  752. 3 Output 3D WKB.
  753. ============ ===========================
  754. Example:
  755. .. code-block:: pycon
  756. >>> from django.contrib.gis.geos import Point, WKBWriter
  757. >>> wkb_w = WKBWriter()
  758. >>> wkb_w.outdim
  759. 2
  760. >>> pnt = Point(1, 1, 1)
  761. >>> wkb_w.write_hex(pnt) # By default, no Z value included:
  762. '0101000000000000000000F03F000000000000F03F'
  763. >>> wkb_w.outdim = 3 # Tell writer to include Z values
  764. >>> wkb_w.write_hex(pnt)
  765. '0101000080000000000000F03F000000000000F03F000000000000F03F'
  766. .. attribute:: WKBWriter.srid
  767. Set this property with a boolean to indicate whether the SRID of the
  768. geometry should be included with the WKB representation. Example:
  769. .. code-block:: pycon
  770. >>> from django.contrib.gis.geos import Point, WKBWriter
  771. >>> wkb_w = WKBWriter()
  772. >>> pnt = Point(1, 1, srid=4326)
  773. >>> wkb_w.write_hex(pnt) # By default, no SRID included:
  774. '0101000000000000000000F03F000000000000F03F'
  775. >>> wkb_w.srid = True # Tell writer to include SRID
  776. >>> wkb_w.write_hex(pnt)
  777. '0101000020E6100000000000000000F03F000000000000F03F'
  778. .. class:: WKTWriter(dim=2, trim=False, precision=None)
  779. This class allows outputting the WKT representation of a geometry. See the
  780. :attr:`WKBWriter.outdim`, :attr:`trim`, and :attr:`precision` attributes for
  781. details about the constructor arguments.
  782. .. method:: WKTWriter.write(geom)
  783. Returns the WKT of the given geometry. Example:
  784. .. code-block:: pycon
  785. >>> from django.contrib.gis.geos import Point, WKTWriter
  786. >>> pnt = Point(1, 1)
  787. >>> wkt_w = WKTWriter()
  788. >>> wkt_w.write(pnt)
  789. 'POINT (1.0000000000000000 1.0000000000000000)'
  790. .. attribute:: WKTWriter.outdim
  791. See :attr:`WKBWriter.outdim`.
  792. .. attribute:: WKTWriter.trim
  793. This property is used to enable or disable trimming of
  794. unnecessary decimals.
  795. .. code-block:: pycon
  796. >>> from django.contrib.gis.geos import Point, WKTWriter
  797. >>> pnt = Point(1, 1)
  798. >>> wkt_w = WKTWriter()
  799. >>> wkt_w.trim
  800. False
  801. >>> wkt_w.write(pnt)
  802. 'POINT (1.0000000000000000 1.0000000000000000)'
  803. >>> wkt_w.trim = True
  804. >>> wkt_w.write(pnt)
  805. 'POINT (1 1)'
  806. .. attribute:: WKTWriter.precision
  807. This property controls the rounding precision of coordinates;
  808. if set to ``None`` rounding is disabled.
  809. >>> from django.contrib.gis.geos import Point, WKTWriter
  810. >>> pnt = Point(1.44, 1.66)
  811. >>> wkt_w = WKTWriter()
  812. >>> print(wkt_w.precision)
  813. None
  814. >>> wkt_w.write(pnt)
  815. 'POINT (1.4399999999999999 1.6599999999999999)'
  816. >>> wkt_w.precision = 0
  817. >>> wkt_w.write(pnt)
  818. 'POINT (1 2)'
  819. >>> wkt_w.precision = 1
  820. >>> wkt_w.write(pnt)
  821. 'POINT (1.4 1.7)'
  822. .. rubric:: Footnotes
  823. .. [#fnogc] *See* `PostGIS EWKB, EWKT and Canonical Forms <https://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2.
  824. Settings
  825. ========
  826. .. setting:: GEOS_LIBRARY_PATH
  827. ``GEOS_LIBRARY_PATH``
  828. ---------------------
  829. A string specifying the location of the GEOS C library. Typically,
  830. this setting is only used if the GEOS C library is in a non-standard
  831. location (e.g., ``/home/bob/lib/libgeos_c.so``).
  832. .. note::
  833. The setting must be the *full* path to the **C** shared library; in
  834. other words you want to use ``libgeos_c.so``, not ``libgeos.so``.
  835. Exceptions
  836. ==========
  837. .. exception:: GEOSException
  838. The base GEOS exception, indicates a GEOS-related error.