db-api.txt 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. ======================
  2. GeoDjango Database API
  3. ======================
  4. .. _spatial-backends:
  5. Spatial Backends
  6. ================
  7. .. module:: django.contrib.gis.db.backends
  8. :synopsis: GeoDjango's spatial database backends.
  9. GeoDjango currently provides the following spatial database backends:
  10. * ``django.contrib.gis.db.backends.postgis``
  11. * ``django.contrib.gis.db.backends.mysql``
  12. * ``django.contrib.gis.db.backends.oracle``
  13. * ``django.contrib.gis.db.backends.spatialite``
  14. .. module:: django.contrib.gis.db.models
  15. :synopsis: GeoDjango's database API.
  16. .. _mysql-spatial-limitations:
  17. MySQL Spatial Limitations
  18. -------------------------
  19. MySQL's spatial extensions only support bounding box operations
  20. (what MySQL calls minimum bounding rectangles, or MBR). Specifically,
  21. `MySQL does not conform to the OGC standard
  22. <https://dev.mysql.com/doc/refman/en/spatial-relation-functions.html>`_:
  23. Currently, MySQL does not implement these functions
  24. [``Contains``, ``Crosses``, ``Disjoint``, ``Intersects``, ``Overlaps``,
  25. ``Touches``, ``Within``]
  26. according to the specification. Those that are implemented return
  27. the same result as the corresponding MBR-based functions.
  28. In other words, while spatial lookups such as :lookup:`contains <gis-contains>`
  29. are available in GeoDjango when using MySQL, the results returned are really
  30. equivalent to what would be returned when using :lookup:`bbcontains`
  31. on a different spatial backend.
  32. .. warning::
  33. True spatial indexes (R-trees) are only supported with
  34. MyISAM tables on MySQL. [#fnmysqlidx]_ In other words, when using
  35. MySQL spatial extensions you have to choose between fast spatial
  36. lookups and the integrity of your data -- MyISAM tables do
  37. not support transactions or foreign key constraints.
  38. Raster Support
  39. --------------
  40. ``RasterField`` is currently only implemented for the PostGIS backend. Spatial
  41. lookups are available for raster fields, but spatial database functions and
  42. aggregates aren't implemented for raster fields.
  43. Creating and Saving Models with Geometry Fields
  44. ===============================================
  45. Here is an example of how to create a geometry object (assuming the ``Zipcode``
  46. model)::
  47. >>> from zipcode.models import Zipcode
  48. >>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
  49. >>> z.save()
  50. :class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::
  51. >>> from django.contrib.gis.geos import GEOSGeometry
  52. >>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
  53. >>> z = Zipcode(code=77096, poly=poly)
  54. >>> z.save()
  55. Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has a
  56. different SRID value) than that of the field, then it will be implicitly
  57. transformed into the SRID of the model's field, using the spatial database's
  58. transform procedure::
  59. >>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
  60. >>> z = Zipcode(code=78212, poly=poly_3084)
  61. >>> z.save()
  62. >>> from django.db import connection
  63. >>> print(connection.queries[-1]['sql']) # printing the last SQL statement executed (requires DEBUG=True)
  64. INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))
  65. Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT
  66. (Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry in
  67. hexadecimal [#fnewkb]_), and GeoJSON [#fngeojson]_. Essentially, if the input is
  68. not a ``GEOSGeometry`` object, the geometry field will attempt to create a
  69. ``GEOSGeometry`` instance from the input.
  70. For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`
  71. objects, refer to the :ref:`GEOS tutorial <geos-tutorial>`.
  72. .. _creating-and-saving-raster-models:
  73. Creating and Saving Models with Raster Fields
  74. =============================================
  75. When creating raster models, the raster field will implicitly convert the input
  76. into a :class:`~django.contrib.gis.gdal.GDALRaster` using lazy-evaluation.
  77. The raster field will therefore accept any input that is accepted by the
  78. :class:`~django.contrib.gis.gdal.GDALRaster` constructor.
  79. Here is an example of how to create a raster object from a raster file
  80. ``volcano.tif`` (assuming the ``Elevation`` model)::
  81. >>> from elevation.models import Elevation
  82. >>> dem = Elevation(name='Volcano', rast='/path/to/raster/volcano.tif')
  83. >>> dem.save()
  84. :class:`~django.contrib.gis.gdal.GDALRaster` objects may also be used to save
  85. raster models::
  86. >>> from django.contrib.gis.gdal import GDALRaster
  87. >>> rast = GDALRaster({'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,
  88. ... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]})
  89. >>> dem = Elevation(name='Canyon', rast=rast)
  90. >>> dem.save()
  91. Note that this equivalent to::
  92. >>> dem = Elevation.objects.create(
  93. ... name='Canyon',
  94. ... rast={'width': 10, 'height': 10, 'name': 'Canyon', 'srid': 4326,
  95. ... 'scale': [0.1, -0.1], 'bands': [{"data": range(100)}]},
  96. ... )
  97. .. _spatial-lookups-intro:
  98. Spatial Lookups
  99. ===============
  100. GeoDjango's lookup types may be used with any manager method like
  101. ``filter()``, ``exclude()``, etc. However, the lookup types unique to
  102. GeoDjango are only available on spatial fields.
  103. Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)
  104. may be chained with those on geographic fields. Geographic lookups accept
  105. geometry and raster input on both sides and input types can be mixed freely.
  106. The general structure of geographic lookups is described below. A complete
  107. reference can be found in the :ref:`spatial lookup reference<spatial-lookups>`.
  108. Geometry Lookups
  109. ----------------
  110. Geographic queries with geometries take the following general form (assuming
  111. the ``Zipcode`` model used in the :doc:`model-api`)::
  112. >>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
  113. >>> qs = Zipcode.objects.exclude(...)
  114. For example::
  115. >>> qs = Zipcode.objects.filter(poly__contains=pnt)
  116. >>> qs = Elevation.objects.filter(poly__contains=rst)
  117. In this case, ``poly`` is the geographic field, :lookup:`contains <gis-contains>`
  118. is the spatial lookup type, ``pnt`` is the parameter (which may be a
  119. :class:`~django.contrib.gis.geos.GEOSGeometry` object or a string of
  120. GeoJSON , WKT, or HEXEWKB), and ``rst`` is a
  121. :class:`~django.contrib.gis.gdal.GDALRaster` object.
  122. .. _spatial-lookup-raster:
  123. Raster Lookups
  124. --------------
  125. The raster lookup syntax is similar to the syntax for geometries. The only
  126. difference is that a band index can be specified as additional input. If no band
  127. index is specified, the first band is used by default (index ``0``). In that
  128. case the syntax is identical to the syntax for geometry lookups.
  129. To specify the band index, an additional parameter can be specified on both
  130. sides of the lookup. On the left hand side, the double underscore syntax is
  131. used to pass a band index. On the right hand side, a tuple of the raster and
  132. band index can be specified.
  133. This results in the following general form for lookups involving rasters
  134. (assuming the ``Elevation`` model used in the :doc:`model-api`)::
  135. >>> qs = Elevation.objects.filter(<field>__<lookup_type>=<parameter>)
  136. >>> qs = Elevation.objects.filter(<field>__<band_index>__<lookup_type>=<parameter>)
  137. >>> qs = Elevation.objects.filter(<field>__<lookup_type>=(<raster_input, <band_index>)
  138. For example::
  139. >>> qs = Elevation.objects.filter(rast__contains=geom)
  140. >>> qs = Elevation.objects.filter(rast__contains=rst)
  141. >>> qs = Elevation.objects.filter(rast__1__contains=geom)
  142. >>> qs = Elevation.objects.filter(rast__contains=(rst, 1))
  143. >>> qs = Elevation.objects.filter(rast__1__contains=(rst, 1))
  144. On the left hand side of the example, ``rast`` is the geographic raster field
  145. and :lookup:`contains <gis-contains>` is the spatial lookup type. On the right
  146. hand side, ``geom`` is a geometry input and ``rst`` is a
  147. :class:`~django.contrib.gis.gdal.GDALRaster` object. The band index defaults to
  148. ``0`` in the first two queries and is set to ``1`` on the others.
  149. While all spatial lookups can be used with raster objects on both sides, not all
  150. underlying operators natively accept raster input. For cases where the operator
  151. expects geometry input, the raster is automatically converted to a geometry.
  152. It's important to keep this in mind when interpreting the lookup results.
  153. The type of raster support is listed for all lookups in the :ref:`compatibility
  154. table <spatial-lookup-compatibility>`. Lookups involving rasters are currently
  155. only available for the PostGIS backend.
  156. .. _distance-queries:
  157. Distance Queries
  158. ================
  159. Introduction
  160. ------------
  161. Distance calculations with spatial data is tricky because, unfortunately,
  162. the Earth is not flat. Some distance queries with fields in a geographic
  163. coordinate system may have to be expressed differently because of
  164. limitations in PostGIS. Please see the :ref:`selecting-an-srid` section
  165. in the :doc:`model-api` documentation for more details.
  166. .. _distance-lookups-intro:
  167. Distance Lookups
  168. ----------------
  169. *Availability*: PostGIS, Oracle, SpatiaLite, PGRaster (Native)
  170. The following distance lookups are available:
  171. * :lookup:`distance_lt`
  172. * :lookup:`distance_lte`
  173. * :lookup:`distance_gt`
  174. * :lookup:`distance_gte`
  175. * :lookup:`dwithin`
  176. .. note::
  177. For *measuring*, rather than querying on distances, use the
  178. :class:`~django.contrib.gis.db.models.functions.Distance` function.
  179. Distance lookups take a tuple parameter comprising:
  180. #. A geometry or raster to base calculations from; and
  181. #. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.
  182. If a :class:`~django.contrib.gis.measure.Distance` object is used,
  183. it may be expressed in any units (the SQL generated will use units
  184. converted to those of the field); otherwise, numeric parameters are assumed
  185. to be in the units of the field.
  186. .. note::
  187. In PostGIS, ``ST_Distance_Sphere`` does *not* limit the geometry types
  188. geographic distance queries are performed with. [#fndistsphere15]_ However,
  189. these queries may take a long time, as great-circle distances must be
  190. calculated on the fly for *every* row in the query. This is because the
  191. spatial index on traditional geometry fields cannot be used.
  192. For much better performance on WGS84 distance queries, consider using
  193. :ref:`geography columns <geography-type>` in your database instead because
  194. they are able to use their spatial index in distance queries.
  195. You can tell GeoDjango to use a geography column by setting ``geography=True``
  196. in your field definition.
  197. For example, let's say we have a ``SouthTexasCity`` model (from the
  198. `GeoDjango distance tests`__ ) on a *projected* coordinate system valid for cities
  199. in southern Texas::
  200. from django.contrib.gis.db import models
  201. class SouthTexasCity(models.Model):
  202. name = models.CharField(max_length=30)
  203. # A projected coordinate system (only valid for South Texas!)
  204. # is used, units are in meters.
  205. point = models.PointField(srid=32140)
  206. Then distance queries may be performed as follows::
  207. >>> from django.contrib.gis.geos import GEOSGeometry
  208. >>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
  209. >>> from geoapp.models import SouthTexasCity
  210. # Distances will be calculated from this point, which does not have to be projected.
  211. >>> pnt = GEOSGeometry('POINT(-96.876369 29.905320)', srid=4326)
  212. # If numeric parameter, units of field (meters in this case) are assumed.
  213. >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
  214. # Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)
  215. >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
  216. >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
  217. >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))
  218. Raster queries work the same way by simply replacing the geometry field
  219. ``point`` with a raster field, or the ``pnt`` object with a raster object, or
  220. both. To specify the band index of a raster input on the right hand side, a
  221. 3-tuple can be passed to the lookup as follows::
  222. >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(rst, 2, D(km=7)))
  223. Where the band with index 2 (the third band) of the raster ``rst`` would be
  224. used for the lookup.
  225. __ https://github.com/django/django/blob/master/tests/gis_tests/distapp/models.py
  226. .. _compatibility-table:
  227. Compatibility Tables
  228. ====================
  229. .. _spatial-lookup-compatibility:
  230. Spatial Lookups
  231. ---------------
  232. The following table provides a summary of what spatial lookups are available
  233. for each spatial database backend. The PostGIS Raster (PGRaster) lookups are
  234. divided into the three categories described in the :ref:`raster lookup details
  235. <spatial-lookup-raster>`: native support ``N``, bilateral native support ``B``,
  236. and geometry conversion support ``C``.
  237. ================================= ========= ======== ============ ========== ========
  238. Lookup Type PostGIS Oracle MySQL [#]_ SpatiaLite PGRaster
  239. ================================= ========= ======== ============ ========== ========
  240. :lookup:`bbcontains` X X X N
  241. :lookup:`bboverlaps` X X X N
  242. :lookup:`contained` X X X N
  243. :lookup:`contains <gis-contains>` X X X X B
  244. :lookup:`contains_properly` X B
  245. :lookup:`coveredby` X X B
  246. :lookup:`covers` X X B
  247. :lookup:`crosses` X X C
  248. :lookup:`disjoint` X X X X B
  249. :lookup:`distance_gt` X X X N
  250. :lookup:`distance_gte` X X X N
  251. :lookup:`distance_lt` X X X N
  252. :lookup:`distance_lte` X X X N
  253. :lookup:`dwithin` X X X B
  254. :lookup:`equals` X X X X C
  255. :lookup:`exact` X X X X B
  256. :lookup:`intersects` X X X X B
  257. :lookup:`isvalid` X X X (≥ 5.7.5) X (LWGEOM)
  258. :lookup:`overlaps` X X X X B
  259. :lookup:`relate` X X X C
  260. :lookup:`same_as` X X X X B
  261. :lookup:`touches` X X X X B
  262. :lookup:`within` X X X X B
  263. :lookup:`left` X C
  264. :lookup:`right` X C
  265. :lookup:`overlaps_left` X B
  266. :lookup:`overlaps_right` X B
  267. :lookup:`overlaps_above` X C
  268. :lookup:`overlaps_below` X C
  269. :lookup:`strictly_above` X C
  270. :lookup:`strictly_below` X C
  271. ================================= ========= ======== ============ ========== ========
  272. .. _database-functions-compatibility:
  273. Database functions
  274. ------------------
  275. .. module:: django.contrib.gis.db.models.functions
  276. :synopsis: GeoDjango's database functions.
  277. The following table provides a summary of what geography-specific database
  278. functions are available on each spatial backend.
  279. ==================================== ======= ============== =========== ==========
  280. Function PostGIS Oracle MySQL SpatiaLite
  281. ==================================== ======= ============== =========== ==========
  282. :class:`Area` X X X X
  283. :class:`AsGeoJSON` X X (≥ 5.7.5) X
  284. :class:`AsGML` X X X
  285. :class:`AsKML` X X
  286. :class:`AsSVG` X X
  287. :class:`BoundingCircle` X X
  288. :class:`Centroid` X X X X
  289. :class:`Difference` X X X (≥ 5.6.1) X
  290. :class:`Distance` X X X (≥ 5.6.1) X
  291. :class:`Envelope` X X X
  292. :class:`ForceRHR` X
  293. :class:`GeoHash` X X (≥ 5.7.5) X (LWGEOM)
  294. :class:`Intersection` X X X (≥ 5.6.1) X
  295. :class:`IsValid` X X X (≥ 5.7.5) X (LWGEOM)
  296. :class:`Length` X X X X
  297. :class:`MakeValid` X X (LWGEOM)
  298. :class:`MemSize` X
  299. :class:`NumGeometries` X X X X
  300. :class:`NumPoints` X X X X
  301. :class:`Perimeter` X X X
  302. :class:`PointOnSurface` X X X
  303. :class:`Reverse` X X X
  304. :class:`Scale` X X
  305. :class:`SnapToGrid` X X
  306. :class:`SymDifference` X X X (≥ 5.6.1) X
  307. :class:`Transform` X X X
  308. :class:`Translate` X X
  309. :class:`Union` X X X (≥ 5.6.1) X
  310. ==================================== ======= ============== =========== ==========
  311. Aggregate Functions
  312. -------------------
  313. The following table provides a summary of what GIS-specific aggregate functions
  314. are available on each spatial backend. Please note that MySQL does not
  315. support any of these aggregates, and is thus excluded from the table.
  316. .. currentmodule:: django.contrib.gis.db.models
  317. ======================= ======= ====== ==========
  318. Aggregate PostGIS Oracle SpatiaLite
  319. ======================= ======= ====== ==========
  320. :class:`Collect` X X
  321. :class:`Extent` X X X
  322. :class:`Extent3D` X
  323. :class:`MakeLine` X X
  324. :class:`Union` X X X
  325. ======================= ======= ====== ==========
  326. .. rubric:: Footnotes
  327. .. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry).
  328. .. [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms <https://postgis.net/docs/using_postgis_dbmanagement.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2.
  329. .. [#fngeojson] *See* Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, `The GeoJSON Format Specification <http://geojson.org/geojson-spec.html>`_, Revision 1.0 (June 16, 2008).
  330. .. [#fndistsphere15] *See* `PostGIS documentation <https://postgis.net/docs/ST_DistanceSphere.html>`_ on ``ST_DistanceSphere``.
  331. .. [#fnmysqlidx] *See* `Creating Spatial Indexes <https://dev.mysql.com/doc/refman/en/creating-spatial-indexes.html>`_
  332. in the MySQL Reference Manual:
  333. For MyISAM tables, ``SPATIAL INDEX`` creates an R-tree index. For storage
  334. engines that support nonspatial indexing of spatial columns, the engine
  335. creates a B-tree index. A B-tree index on spatial values will be useful
  336. for exact-value lookups, but not for range scans.
  337. .. [#] Refer :ref:`mysql-spatial-limitations` section for more details.