expressions.txt 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. When an
  7. expression outputs a boolean value, it may be used directly in filters. There
  8. are a number of built-in expressions (documented below) that can be used to
  9. help you write queries. Expressions can be combined, or in some cases nested,
  10. to form more complex computations.
  11. Supported arithmetic
  12. ====================
  13. Django supports negation, addition, subtraction, multiplication, division,
  14. modulo arithmetic, and the power operator on query expressions, using Python
  15. constants, variables, and even other expressions.
  16. Some examples
  17. =============
  18. .. code-block:: python
  19. from django.db.models import Count, F, Value
  20. from django.db.models.functions import Length, Upper
  21. # Find companies that have more employees than chairs.
  22. Company.objects.filter(num_employees__gt=F('num_chairs'))
  23. # Find companies that have at least twice as many employees
  24. # as chairs. Both the querysets below are equivalent.
  25. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  26. Company.objects.filter(
  27. num_employees__gt=F('num_chairs') + F('num_chairs'))
  28. # How many chairs are needed for each company to seat all employees?
  29. >>> company = Company.objects.filter(
  30. ... num_employees__gt=F('num_chairs')).annotate(
  31. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  32. >>> company.num_employees
  33. 120
  34. >>> company.num_chairs
  35. 50
  36. >>> company.chairs_needed
  37. 70
  38. # Create a new company using expressions.
  39. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  40. # Be sure to refresh it if you need to access the field.
  41. >>> company.refresh_from_db()
  42. >>> company.ticker
  43. 'GOOG'
  44. # Annotate models with an aggregated value. Both forms
  45. # below are equivalent.
  46. Company.objects.annotate(num_products=Count('products'))
  47. Company.objects.annotate(num_products=Count(F('products')))
  48. # Aggregates can contain complex computations also
  49. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  50. # Expressions can also be used in order_by(), either directly
  51. Company.objects.order_by(Length('name').asc())
  52. Company.objects.order_by(Length('name').desc())
  53. # or using the double underscore lookup syntax.
  54. from django.db.models import CharField
  55. from django.db.models.functions import Length
  56. CharField.register_lookup(Length)
  57. Company.objects.order_by('name__length')
  58. # Boolean expression can be used directly in filters.
  59. from django.db.models import Exists
  60. Company.objects.filter(
  61. Exists(Employee.objects.filter(company=OuterRef('pk'), salary__gt=10))
  62. )
  63. Built-in Expressions
  64. ====================
  65. .. note::
  66. These expressions are defined in ``django.db.models.expressions`` and
  67. ``django.db.models.aggregates``, but for convenience they're available and
  68. usually imported from :mod:`django.db.models`.
  69. ``F()`` expressions
  70. -------------------
  71. .. class:: F
  72. An ``F()`` object represents the value of a model field or annotated column. It
  73. makes it possible to refer to model field values and perform database
  74. operations using them without actually having to pull them out of the database
  75. into Python memory.
  76. Instead, Django uses the ``F()`` object to generate an SQL expression that
  77. describes the required operation at the database level.
  78. Let's try this with an example. Normally, one might do something like this::
  79. # Tintin filed a news story!
  80. reporter = Reporters.objects.get(name='Tintin')
  81. reporter.stories_filed += 1
  82. reporter.save()
  83. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  84. into memory and manipulated it using familiar Python operators, and then saved
  85. the object back to the database. But instead we could also have done::
  86. from django.db.models import F
  87. reporter = Reporters.objects.get(name='Tintin')
  88. reporter.stories_filed = F('stories_filed') + 1
  89. reporter.save()
  90. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  91. normal Python assignment of value to an instance attribute, in fact it's an SQL
  92. construct describing an operation on the database.
  93. When Django encounters an instance of ``F()``, it overrides the standard Python
  94. operators to create an encapsulated SQL expression; in this case, one which
  95. instructs the database to increment the database field represented by
  96. ``reporter.stories_filed``.
  97. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  98. know about it - it is dealt with entirely by the database. All Python does,
  99. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  100. and describe the operation.
  101. To access the new value saved this way, the object must be reloaded::
  102. reporter = Reporters.objects.get(pk=reporter.pk)
  103. # Or, more succinctly:
  104. reporter.refresh_from_db()
  105. As well as being used in operations on single instances as above, ``F()`` can
  106. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  107. the two queries we were using above - the ``get()`` and the
  108. :meth:`~Model.save()` - to just one::
  109. reporter = Reporters.objects.filter(name='Tintin')
  110. reporter.update(stories_filed=F('stories_filed') + 1)
  111. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  112. the field value on multiple objects - which could be very much faster than
  113. pulling them all into Python from the database, looping over them, incrementing
  114. the field value of each one, and saving each one back to the database::
  115. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  116. ``F()`` therefore can offer performance advantages by:
  117. * getting the database, rather than Python, to do work
  118. * reducing the number of queries some operations require
  119. .. _avoiding-race-conditions-using-f:
  120. Avoiding race conditions using ``F()``
  121. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  122. Another useful benefit of ``F()`` is that having the database - rather than
  123. Python - update a field's value avoids a *race condition*.
  124. If two Python threads execute the code in the first example above, one thread
  125. could retrieve, increment, and save a field's value after the other has
  126. retrieved it from the database. The value that the second thread saves will be
  127. based on the original value; the work of the first thread will be lost.
  128. If the database is responsible for updating the field, the process is more
  129. robust: it will only ever update the field based on the value of the field in
  130. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  131. than based on its value when the instance was retrieved.
  132. ``F()`` assignments persist after ``Model.save()``
  133. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  134. ``F()`` objects assigned to model fields persist after saving the model
  135. instance and will be applied on each :meth:`~Model.save()`. For example::
  136. reporter = Reporters.objects.get(name='Tintin')
  137. reporter.stories_filed = F('stories_filed') + 1
  138. reporter.save()
  139. reporter.name = 'Tintin Jr.'
  140. reporter.save()
  141. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  142. the final value will be ``3``. This persistence can be avoided by reloading the
  143. model object after saving it, for example, by using
  144. :meth:`~Model.refresh_from_db()`.
  145. Using ``F()`` in filters
  146. ~~~~~~~~~~~~~~~~~~~~~~~~
  147. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  148. possible to filter a set of objects against criteria based on their field
  149. values, rather than on Python values.
  150. This is documented in :ref:`using F() expressions in queries
  151. <using-f-expressions-in-filters>`.
  152. .. _using-f-with-annotations:
  153. Using ``F()`` with annotations
  154. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  155. ``F()`` can be used to create dynamic fields on your models by combining
  156. different fields with arithmetic::
  157. company = Company.objects.annotate(
  158. chairs_needed=F('num_employees') - F('num_chairs'))
  159. If the fields that you're combining are of different types you'll need
  160. to tell Django what kind of field will be returned. Since ``F()`` does not
  161. directly support ``output_field`` you will need to wrap the expression with
  162. :class:`ExpressionWrapper`::
  163. from django.db.models import DateTimeField, ExpressionWrapper, F
  164. Ticket.objects.annotate(
  165. expires=ExpressionWrapper(
  166. F('active_at') + F('duration'), output_field=DateTimeField()))
  167. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  168. primary key value rather than a model instance::
  169. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  170. >> car.manufacturer
  171. <Manufacturer: Toyota>
  172. >> car.built_by
  173. 3
  174. .. _using-f-to-sort-null-values:
  175. Using ``F()`` to sort null values
  176. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  177. Use ``F()`` and the ``nulls_first`` or ``nulls_last`` keyword argument to
  178. :meth:`.Expression.asc` or :meth:`~.Expression.desc` to control the ordering of
  179. a field's null values. By default, the ordering depends on your database.
  180. For example, to sort companies that haven't been contacted (``last_contacted``
  181. is null) after companies that have been contacted::
  182. from django.db.models import F
  183. Company.objects.order_by(F('last_contacted').desc(nulls_last=True))
  184. .. _func-expressions:
  185. ``Func()`` expressions
  186. ----------------------
  187. ``Func()`` expressions are the base type of all expressions that involve
  188. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  189. They can be used directly::
  190. from django.db.models import F, Func
  191. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  192. or they can be used to build a library of database functions::
  193. class Lower(Func):
  194. function = 'LOWER'
  195. queryset.annotate(field_lower=Lower('field'))
  196. But both cases will result in a queryset where each model is annotated with an
  197. extra attribute ``field_lower`` produced, roughly, from the following SQL:
  198. .. code-block:: sql
  199. SELECT
  200. ...
  201. LOWER("db_table"."field") as "field_lower"
  202. See :doc:`database-functions` for a list of built-in database functions.
  203. The ``Func`` API is as follows:
  204. .. class:: Func(*expressions, **extra)
  205. .. attribute:: function
  206. A class attribute describing the function that will be generated.
  207. Specifically, the ``function`` will be interpolated as the ``function``
  208. placeholder within :attr:`template`. Defaults to ``None``.
  209. .. attribute:: template
  210. A class attribute, as a format string, that describes the SQL that is
  211. generated for this function. Defaults to
  212. ``'%(function)s(%(expressions)s)'``.
  213. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  214. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  215. ``template`` attribute because the string is interpolated twice: once
  216. during the template interpolation in ``as_sql()`` and once in the SQL
  217. interpolation with the query parameters in the database cursor.
  218. .. attribute:: arg_joiner
  219. A class attribute that denotes the character used to join the list of
  220. ``expressions`` together. Defaults to ``', '``.
  221. .. attribute:: arity
  222. A class attribute that denotes the number of arguments the function
  223. accepts. If this attribute is set and the function is called with a
  224. different number of expressions, ``TypeError`` will be raised. Defaults
  225. to ``None``.
  226. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  227. Generates the SQL fragment for the database function. Returns a tuple
  228. ``(sql, params)``, where ``sql`` is the SQL string, and ``params`` is
  229. the list or tuple of query parameters.
  230. The ``as_vendor()`` methods should use the ``function``, ``template``,
  231. ``arg_joiner``, and any other ``**extra_context`` parameters to
  232. customize the SQL as needed. For example:
  233. .. code-block:: python
  234. :caption: django/db/models/functions.py
  235. class ConcatPair(Func):
  236. ...
  237. function = 'CONCAT'
  238. ...
  239. def as_mysql(self, compiler, connection, **extra_context):
  240. return super().as_sql(
  241. compiler, connection,
  242. function='CONCAT_WS',
  243. template="%(function)s('', %(expressions)s)",
  244. **extra_context
  245. )
  246. To avoid an SQL injection vulnerability, ``extra_context`` :ref:`must
  247. not contain untrusted user input <avoiding-sql-injection-in-query-expressions>`
  248. as these values are interpolated into the SQL string rather than passed
  249. as query parameters, where the database driver would escape them.
  250. The ``*expressions`` argument is a list of positional expressions that the
  251. function will be applied to. The expressions will be converted to strings,
  252. joined together with ``arg_joiner``, and then interpolated into the ``template``
  253. as the ``expressions`` placeholder.
  254. Positional arguments can be expressions or Python values. Strings are
  255. assumed to be column references and will be wrapped in ``F()`` expressions
  256. while other values will be wrapped in ``Value()`` expressions.
  257. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  258. into the ``template`` attribute. To avoid an SQL injection vulnerability,
  259. ``extra`` :ref:`must not contain untrusted user input
  260. <avoiding-sql-injection-in-query-expressions>` as these values are interpolated
  261. into the SQL string rather than passed as query parameters, where the database
  262. driver would escape them.
  263. The ``function``, ``template``, and ``arg_joiner`` keywords can be used to
  264. replace the attributes of the same name without having to define your own
  265. class. ``output_field`` can be used to define the expected return type.
  266. ``Aggregate()`` expressions
  267. ---------------------------
  268. An aggregate expression is a special case of a :ref:`Func() expression
  269. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  270. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  271. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  272. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  273. some complex computations::
  274. from django.db.models import Count
  275. Company.objects.annotate(
  276. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  277. The ``Aggregate`` API is as follows:
  278. .. class:: Aggregate(*expressions, output_field=None, distinct=False, filter=None, **extra)
  279. .. attribute:: template
  280. A class attribute, as a format string, that describes the SQL that is
  281. generated for this aggregate. Defaults to
  282. ``'%(function)s(%(distinct)s%(expressions)s)'``.
  283. .. attribute:: function
  284. A class attribute describing the aggregate function that will be
  285. generated. Specifically, the ``function`` will be interpolated as the
  286. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  287. .. attribute:: window_compatible
  288. Defaults to ``True`` since most aggregate functions can be used as the
  289. source expression in :class:`~django.db.models.expressions.Window`.
  290. .. attribute:: allow_distinct
  291. A class attribute determining whether or not this aggregate function
  292. allows passing a ``distinct`` keyword argument. If set to ``False``
  293. (default), ``TypeError`` is raised if ``distinct=True`` is passed.
  294. The ``expressions`` positional arguments can include expressions or the names
  295. of model fields. They will be converted to a string and used as the
  296. ``expressions`` placeholder within the ``template``.
  297. The ``output_field`` argument requires a model field instance, like
  298. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  299. after it's retrieved from the database. Usually no arguments are needed when
  300. instantiating the model field as any arguments relating to data validation
  301. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  302. output value.
  303. Note that ``output_field`` is only required when Django is unable to determine
  304. what field type the result should be. Complex expressions that mix field types
  305. should define the desired ``output_field``. For example, adding an
  306. ``IntegerField()`` and a ``FloatField()`` together should probably have
  307. ``output_field=FloatField()`` defined.
  308. The ``distinct`` argument determines whether or not the aggregate function
  309. should be invoked for each distinct value of ``expressions`` (or set of
  310. values, for multiple ``expressions``). The argument is only supported on
  311. aggregates that have :attr:`~Aggregate.allow_distinct` set to ``True``.
  312. The ``filter`` argument takes a :class:`Q object <django.db.models.Q>` that's
  313. used to filter the rows that are aggregated. See :ref:`conditional-aggregation`
  314. and :ref:`filtering-on-annotations` for example usage.
  315. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  316. into the ``template`` attribute.
  317. Creating your own Aggregate Functions
  318. -------------------------------------
  319. You can create your own aggregate functions, too. At a minimum, you need to
  320. define ``function``, but you can also completely customize the SQL that is
  321. generated. Here's a brief example::
  322. from django.db.models import Aggregate
  323. class Sum(Aggregate):
  324. # Supports SUM(ALL field).
  325. function = 'SUM'
  326. template = '%(function)s(%(all_values)s%(expressions)s)'
  327. allow_distinct = False
  328. def __init__(self, expression, all_values=False, **extra):
  329. super().__init__(
  330. expression,
  331. all_values='ALL ' if all_values else '',
  332. **extra
  333. )
  334. ``Value()`` expressions
  335. -----------------------
  336. .. class:: Value(value, output_field=None)
  337. A ``Value()`` object represents the smallest possible component of an
  338. expression: a simple value. When you need to represent the value of an integer,
  339. boolean, or string within an expression, you can wrap that value within a
  340. ``Value()``.
  341. You will rarely need to use ``Value()`` directly. When you write the expression
  342. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  343. allowing simple values to be used in more complex expressions. You will need to
  344. use ``Value()`` when you want to pass a string to an expression. Most
  345. expressions interpret a string argument as the name of a field, like
  346. ``Lower('name')``.
  347. The ``value`` argument describes the value to be included in the expression,
  348. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  349. values into their corresponding database type.
  350. The ``output_field`` argument should be a model field instance, like
  351. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  352. after it's retrieved from the database. Usually no arguments are needed when
  353. instantiating the model field as any arguments relating to data validation
  354. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  355. output value. If no ``output_field`` is specified it will be tentatively
  356. inferred from the :py:class:`type` of the provided ``value``, if possible. For
  357. example, passing an instance of :py:class:`datetime.datetime` as ``value``
  358. would default ``output_field`` to :class:`~django.db.models.DateTimeField`.
  359. .. versionchanged:: 3.2
  360. Support for inferring a default ``output_field`` from the type of ``value``
  361. was added.
  362. ``ExpressionWrapper()`` expressions
  363. -----------------------------------
  364. .. class:: ExpressionWrapper(expression, output_field)
  365. ``ExpressionWrapper`` surrounds another expression and provides access to
  366. properties, such as ``output_field``, that may not be available on other
  367. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  368. ``F()`` expressions with different types as described in
  369. :ref:`using-f-with-annotations`.
  370. Conditional expressions
  371. -----------------------
  372. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  373. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  374. expressions. For more details see :doc:`conditional-expressions`.
  375. ``Subquery()`` expressions
  376. --------------------------
  377. .. class:: Subquery(queryset, output_field=None)
  378. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  379. expression.
  380. For example, to annotate each post with the email address of the author of the
  381. newest comment on that post::
  382. >>> from django.db.models import OuterRef, Subquery
  383. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  384. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  385. On PostgreSQL, the SQL looks like:
  386. .. code-block:: sql
  387. SELECT "post"."id", (
  388. SELECT U0."email"
  389. FROM "comment" U0
  390. WHERE U0."post_id" = ("post"."id")
  391. ORDER BY U0."created_at" DESC LIMIT 1
  392. ) AS "newest_commenter_email" FROM "post"
  393. .. note::
  394. The examples in this section are designed to show how to force
  395. Django to execute a subquery. In some cases it may be possible to
  396. write an equivalent queryset that performs the same task more
  397. clearly or efficiently.
  398. Referencing columns from the outer queryset
  399. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  400. .. class:: OuterRef(field)
  401. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  402. from the outer query. It acts like an :class:`F` expression except that the
  403. check to see if it refers to a valid field isn't made until the outer queryset
  404. is resolved.
  405. Instances of ``OuterRef`` may be used in conjunction with nested instances
  406. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  407. parent. For example, this queryset would need to be within a nested pair of
  408. ``Subquery`` instances to resolve correctly::
  409. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  410. Limiting a subquery to a single column
  411. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  412. There are times when a single column must be returned from a ``Subquery``, for
  413. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  414. all comments for posts published within the last day::
  415. >>> from datetime import timedelta
  416. >>> from django.utils import timezone
  417. >>> one_day_ago = timezone.now() - timedelta(days=1)
  418. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  419. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  420. In this case, the subquery must use :meth:`~.QuerySet.values`
  421. to return only a single column: the primary key of the post.
  422. Limiting the subquery to a single row
  423. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  424. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  425. queryset is used::
  426. >>> subquery = Subquery(newest.values('email')[:1])
  427. >>> Post.objects.annotate(newest_commenter_email=subquery)
  428. In this case, the subquery must only return a single column *and* a single
  429. row: the email address of the most recently created comment.
  430. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  431. ``OuterRef`` cannot be resolved until the queryset is used within a
  432. ``Subquery``.)
  433. ``Exists()`` subqueries
  434. ~~~~~~~~~~~~~~~~~~~~~~~
  435. .. class:: Exists(queryset)
  436. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  437. many cases it will perform better than a subquery since the database is able to
  438. stop evaluation of the subquery when a first matching row is found.
  439. For example, to annotate each post with whether or not it has a comment from
  440. within the last day::
  441. >>> from django.db.models import Exists, OuterRef
  442. >>> from datetime import timedelta
  443. >>> from django.utils import timezone
  444. >>> one_day_ago = timezone.now() - timedelta(days=1)
  445. >>> recent_comments = Comment.objects.filter(
  446. ... post=OuterRef('pk'),
  447. ... created_at__gte=one_day_ago,
  448. ... )
  449. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  450. On PostgreSQL, the SQL looks like:
  451. .. code-block:: sql
  452. SELECT "post"."id", "post"."published_at", EXISTS(
  453. SELECT U0."id", U0."post_id", U0."email", U0."created_at"
  454. FROM "comment" U0
  455. WHERE (
  456. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  457. U0."post_id" = ("post"."id")
  458. )
  459. ) AS "recent_comment" FROM "post"
  460. It's unnecessary to force ``Exists`` to refer to a single column, since the
  461. columns are discarded and a boolean result is returned. Similarly, since
  462. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  463. degrade performance, it's automatically removed.
  464. You can query using ``NOT EXISTS`` with ``~Exists()``.
  465. Filtering on a ``Subquery()`` or ``Exists()`` expressions
  466. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  467. ``Subquery()`` that returns a boolean value and ``Exists()`` may be used as a
  468. ``condition`` in :class:`~django.db.models.expressions.When` expressions, or to
  469. directly filter a queryset::
  470. >>> recent_comments = Comment.objects.filter(...) # From above
  471. >>> Post.objects.filter(Exists(recent_comments))
  472. This will ensure that the subquery will not be added to the ``SELECT`` columns,
  473. which may result in a better performance.
  474. Using aggregates within a ``Subquery`` expression
  475. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  476. Aggregates may be used within a ``Subquery``, but they require a specific
  477. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  478. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  479. Assuming both models have a ``length`` field, to find posts where the post
  480. length is greater than the total length of all combined comments::
  481. >>> from django.db.models import OuterRef, Subquery, Sum
  482. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  483. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  484. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  485. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  486. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  487. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  488. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  489. which these queryset methods are applied is important. In this case, since the
  490. subquery must be limited to a single column, ``values('total')`` is required.
  491. This is the only way to perform an aggregation within a ``Subquery``, as
  492. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  493. there is an ``OuterRef``, this will not be possible to resolve).
  494. Raw SQL expressions
  495. -------------------
  496. .. currentmodule:: django.db.models.expressions
  497. .. class:: RawSQL(sql, params, output_field=None)
  498. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  499. In these edge cases, use the ``RawSQL`` expression. For example::
  500. >>> from django.db.models.expressions import RawSQL
  501. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
  502. These extra lookups may not be portable to different database engines (because
  503. you're explicitly writing SQL code) and violate the DRY principle, so you
  504. should avoid them if possible.
  505. .. warning::
  506. To protect against `SQL injection attacks
  507. <https://en.wikipedia.org/wiki/SQL_injection>`_, you must escape any
  508. parameters that the user can control by using ``params``. ``params`` is a
  509. required argument to force you to acknowledge that you're not interpolating
  510. your SQL with user-provided data.
  511. You also must not quote placeholders in the SQL string. This example is
  512. vulnerable to SQL injection because of the quotes around ``%s``::
  513. RawSQL("select col from sometable where othercol = '%s'") # unsafe!
  514. You can read more about how Django's :ref:`SQL injection protection
  515. <sql-injection-protection>` works.
  516. Window functions
  517. ----------------
  518. Window functions provide a way to apply functions on partitions. Unlike a
  519. normal aggregation function which computes a final result for each set defined
  520. by the group by, window functions operate on :ref:`frames <window-frames>` and
  521. partitions, and compute the result for each row.
  522. You can specify multiple windows in the same query which in Django ORM would be
  523. equivalent to including multiple expressions in a :doc:`QuerySet.annotate()
  524. </topics/db/aggregation>` call. The ORM doesn't make use of named windows,
  525. instead they are part of the selected columns.
  526. .. class:: Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)
  527. .. attribute:: filterable
  528. Defaults to ``False``. The SQL standard disallows referencing window
  529. functions in the ``WHERE`` clause and Django raises an exception when
  530. constructing a ``QuerySet`` that would do that.
  531. .. attribute:: template
  532. Defaults to ``%(expression)s OVER (%(window)s)'``. If only the
  533. ``expression`` argument is provided, the window clause will be blank.
  534. The ``Window`` class is the main expression for an ``OVER`` clause.
  535. The ``expression`` argument is either a :ref:`window function
  536. <window-functions>`, an :ref:`aggregate function <aggregation-functions>`, or
  537. an expression that's compatible in a window clause.
  538. The ``partition_by`` argument is a list of expressions (column names should be
  539. wrapped in an ``F``-object) that control the partitioning of the rows.
  540. Partitioning narrows which rows are used to compute the result set.
  541. The ``output_field`` is specified either as an argument or by the expression.
  542. The ``order_by`` argument accepts a sequence of expressions on which you can
  543. call :meth:`~django.db.models.Expression.asc` and
  544. :meth:`~django.db.models.Expression.desc`. The ordering controls the order in
  545. which the expression is applied. For example, if you sum over the rows in a
  546. partition, the first result is the value of the first row, the second is the
  547. sum of first and second row.
  548. The ``frame`` parameter specifies which other rows that should be used in the
  549. computation. See :ref:`window-frames` for details.
  550. For example, to annotate each movie with the average rating for the movies by
  551. the same studio in the same genre and release year::
  552. >>> from django.db.models import Avg, F, Window
  553. >>> from django.db.models.functions import ExtractYear
  554. >>> Movie.objects.annotate(
  555. >>> avg_rating=Window(
  556. >>> expression=Avg('rating'),
  557. >>> partition_by=[F('studio'), F('genre')],
  558. >>> order_by=ExtractYear('released').asc(),
  559. >>> ),
  560. >>> )
  561. This allows you to check if a movie is rated better or worse than its peers.
  562. You may want to apply multiple expressions over the same window, i.e., the
  563. same partition and frame. For example, you could modify the previous example
  564. to also include the best and worst rating in each movie's group (same studio,
  565. genre, and release year) by using three window functions in the same query. The
  566. partition and ordering from the previous example is extracted into a dictionary
  567. to reduce repetition::
  568. >>> from django.db.models import Avg, F, Max, Min, Window
  569. >>> from django.db.models.functions import ExtractYear
  570. >>> window = {
  571. >>> 'partition_by': [F('studio'), F('genre')],
  572. >>> 'order_by': ExtractYear('released').asc(),
  573. >>> }
  574. >>> Movie.objects.annotate(
  575. >>> avg_rating=Window(
  576. >>> expression=Avg('rating'), **window,
  577. >>> ),
  578. >>> best=Window(
  579. >>> expression=Max('rating'), **window,
  580. >>> ),
  581. >>> worst=Window(
  582. >>> expression=Min('rating'), **window,
  583. >>> ),
  584. >>> )
  585. Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
  586. support window expressions. Support for different window expression features
  587. varies among the different databases. For example, the options in
  588. :meth:`~django.db.models.Expression.asc` and
  589. :meth:`~django.db.models.Expression.desc` may not be supported. Consult the
  590. documentation for your database as needed.
  591. .. _window-frames:
  592. Frames
  593. ~~~~~~
  594. For a window frame, you can choose either a range-based sequence of rows or an
  595. ordinary sequence of rows.
  596. .. class:: ValueRange(start=None, end=None)
  597. .. attribute:: frame_type
  598. This attribute is set to ``'RANGE'``.
  599. PostgreSQL has limited support for ``ValueRange`` and only supports use of
  600. the standard start and end points, such as ``CURRENT ROW`` and ``UNBOUNDED
  601. FOLLOWING``.
  602. .. class:: RowRange(start=None, end=None)
  603. .. attribute:: frame_type
  604. This attribute is set to ``'ROWS'``.
  605. Both classes return SQL with the template::
  606. %(frame_type)s BETWEEN %(start)s AND %(end)s
  607. Frames narrow the rows that are used for computing the result. They shift from
  608. some start point to some specified end point. Frames can be used with and
  609. without partitions, but it's often a good idea to specify an ordering of the
  610. window to ensure a deterministic result. In a frame, a peer in a frame is a row
  611. with an equivalent value, or all rows if an ordering clause isn't present.
  612. The default starting point for a frame is ``UNBOUNDED PRECEDING`` which is the
  613. first row of the partition. The end point is always explicitly included in the
  614. SQL generated by the ORM and is by default ``UNBOUNDED FOLLOWING``. The default
  615. frame includes all rows from the partition to the last row in the set.
  616. The accepted values for the ``start`` and ``end`` arguments are ``None``, an
  617. integer, or zero. A negative integer for ``start`` results in ``N preceding``,
  618. while ``None`` yields ``UNBOUNDED PRECEDING``. For both ``start`` and ``end``,
  619. zero will return ``CURRENT ROW``. Positive integers are accepted for ``end``.
  620. There's a difference in what ``CURRENT ROW`` includes. When specified in
  621. ``ROWS`` mode, the frame starts or ends with the current row. When specified in
  622. ``RANGE`` mode, the frame starts or ends at the first or last peer according to
  623. the ordering clause. Thus, ``RANGE CURRENT ROW`` evaluates the expression for
  624. rows which have the same value specified by the ordering. Because the template
  625. includes both the ``start`` and ``end`` points, this may be expressed with::
  626. ValueRange(start=0, end=0)
  627. If a movie's "peers" are described as movies released by the same studio in the
  628. same genre in the same year, this ``RowRange`` example annotates each movie
  629. with the average rating of a movie's two prior and two following peers::
  630. >>> from django.db.models import Avg, F, RowRange, Window
  631. >>> from django.db.models.functions import ExtractYear
  632. >>> Movie.objects.annotate(
  633. >>> avg_rating=Window(
  634. >>> expression=Avg('rating'),
  635. >>> partition_by=[F('studio'), F('genre')],
  636. >>> order_by=ExtractYear('released').asc(),
  637. >>> frame=RowRange(start=-2, end=2),
  638. >>> ),
  639. >>> )
  640. If the database supports it, you can specify the start and end points based on
  641. values of an expression in the partition. If the ``released`` field of the
  642. ``Movie`` model stores the release month of each movies, this ``ValueRange``
  643. example annotates each movie with the average rating of a movie's peers
  644. released between twelve months before and twelve months after the each movie.
  645. >>> from django.db.models import Avg, ExpressionList, F, ValueRange, Window
  646. >>> Movie.objects.annotate(
  647. >>> avg_rating=Window(
  648. >>> expression=Avg('rating'),
  649. >>> partition_by=[F('studio'), F('genre')],
  650. >>> order_by=F('released').asc(),
  651. >>> frame=ValueRange(start=-12, end=12),
  652. >>> ),
  653. >>> )
  654. .. currentmodule:: django.db.models
  655. Technical Information
  656. =====================
  657. Below you'll find technical implementation details that may be useful to
  658. library authors. The technical API and examples below will help with
  659. creating generic query expressions that can extend the built-in functionality
  660. that Django provides.
  661. Expression API
  662. --------------
  663. Query expressions implement the :ref:`query expression API <query-expression>`,
  664. but also expose a number of extra methods and attributes listed below. All
  665. query expressions must inherit from ``Expression()`` or a relevant
  666. subclass.
  667. When a query expression wraps another expression, it is responsible for
  668. calling the appropriate methods on the wrapped expression.
  669. .. class:: Expression
  670. .. attribute:: contains_aggregate
  671. Tells Django that this expression contains an aggregate and that a
  672. ``GROUP BY`` clause needs to be added to the query.
  673. .. attribute:: contains_over_clause
  674. Tells Django that this expression contains a
  675. :class:`~django.db.models.expressions.Window` expression. It's used,
  676. for example, to disallow window function expressions in queries that
  677. modify data.
  678. .. attribute:: filterable
  679. Tells Django that this expression can be referenced in
  680. :meth:`.QuerySet.filter`. Defaults to ``True``.
  681. .. attribute:: window_compatible
  682. Tells Django that this expression can be used as the source expression
  683. in :class:`~django.db.models.expressions.Window`. Defaults to
  684. ``False``.
  685. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  686. Provides the chance to do any pre-processing or validation of
  687. the expression before it's added to the query. ``resolve_expression()``
  688. must also be called on any nested expressions. A ``copy()`` of ``self``
  689. should be returned with any necessary transformations.
  690. ``query`` is the backend query implementation.
  691. ``allow_joins`` is a boolean that allows or denies the use of
  692. joins in the query.
  693. ``reuse`` is a set of reusable joins for multi-join scenarios.
  694. ``summarize`` is a boolean that, when ``True``, signals that the
  695. query being computed is a terminal aggregate query.
  696. ``for_save`` is a boolean that, when ``True``, signals that the query
  697. being executed is performing a create or update.
  698. .. method:: get_source_expressions()
  699. Returns an ordered list of inner expressions. For example::
  700. >>> Sum(F('foo')).get_source_expressions()
  701. [F('foo')]
  702. .. method:: set_source_expressions(expressions)
  703. Takes a list of expressions and stores them such that
  704. ``get_source_expressions()`` can return them.
  705. .. method:: relabeled_clone(change_map)
  706. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  707. Column aliases are renamed when subqueries are created.
  708. ``relabeled_clone()`` should also be called on any nested expressions
  709. and assigned to the clone.
  710. ``change_map`` is a dictionary mapping old aliases to new aliases.
  711. Example::
  712. def relabeled_clone(self, change_map):
  713. clone = copy.copy(self)
  714. clone.expression = self.expression.relabeled_clone(change_map)
  715. return clone
  716. .. method:: convert_value(value, expression, connection)
  717. A hook allowing the expression to coerce ``value`` into a more
  718. appropriate type.
  719. ``expression`` is the same as ``self``.
  720. .. method:: get_group_by_cols(alias=None)
  721. Responsible for returning the list of columns references by
  722. this expression. ``get_group_by_cols()`` should be called on any
  723. nested expressions. ``F()`` objects, in particular, hold a reference
  724. to a column. The ``alias`` parameter will be ``None`` unless the
  725. expression has been annotated and is used for grouping.
  726. .. method:: asc(nulls_first=False, nulls_last=False)
  727. Returns the expression ready to be sorted in ascending order.
  728. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  729. See :ref:`using-f-to-sort-null-values` for example usage.
  730. .. method:: desc(nulls_first=False, nulls_last=False)
  731. Returns the expression ready to be sorted in descending order.
  732. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  733. See :ref:`using-f-to-sort-null-values` for example usage.
  734. .. method:: reverse_ordering()
  735. Returns ``self`` with any modifications required to reverse the sort
  736. order within an ``order_by`` call. As an example, an expression
  737. implementing ``NULLS LAST`` would change its value to be
  738. ``NULLS FIRST``. Modifications are only required for expressions that
  739. implement sort order like ``OrderBy``. This method is called when
  740. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  741. queryset.
  742. Writing your own Query Expressions
  743. ----------------------------------
  744. You can write your own query expression classes that use, and can integrate
  745. with, other query expressions. Let's step through an example by writing an
  746. implementation of the ``COALESCE`` SQL function, without using the built-in
  747. :ref:`Func() expressions <func-expressions>`.
  748. The ``COALESCE`` SQL function is defined as taking a list of columns or
  749. values. It will return the first column or value that isn't ``NULL``.
  750. We'll start by defining the template to be used for SQL generation and
  751. an ``__init__()`` method to set some attributes::
  752. import copy
  753. from django.db.models import Expression
  754. class Coalesce(Expression):
  755. template = 'COALESCE( %(expressions)s )'
  756. def __init__(self, expressions, output_field):
  757. super().__init__(output_field=output_field)
  758. if len(expressions) < 2:
  759. raise ValueError('expressions must have at least 2 elements')
  760. for expression in expressions:
  761. if not hasattr(expression, 'resolve_expression'):
  762. raise TypeError('%r is not an Expression' % expression)
  763. self.expressions = expressions
  764. We do some basic validation on the parameters, including requiring at least
  765. 2 columns or values, and ensuring they are expressions. We are requiring
  766. ``output_field`` here so that Django knows what kind of model field to assign
  767. the eventual result to.
  768. Now we implement the pre-processing and validation. Since we do not have
  769. any of our own validation at this point, we delegate to the nested
  770. expressions::
  771. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  772. c = self.copy()
  773. c.is_summary = summarize
  774. for pos, expression in enumerate(self.expressions):
  775. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  776. return c
  777. Next, we write the method responsible for generating the SQL::
  778. def as_sql(self, compiler, connection, template=None):
  779. sql_expressions, sql_params = [], []
  780. for expression in self.expressions:
  781. sql, params = compiler.compile(expression)
  782. sql_expressions.append(sql)
  783. sql_params.extend(params)
  784. template = template or self.template
  785. data = {'expressions': ','.join(sql_expressions)}
  786. return template % data, sql_params
  787. def as_oracle(self, compiler, connection):
  788. """
  789. Example of vendor specific handling (Oracle in this case).
  790. Let's make the function name lowercase.
  791. """
  792. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  793. ``as_sql()`` methods can support custom keyword arguments, allowing
  794. ``as_vendorname()`` methods to override data used to generate the SQL string.
  795. Using ``as_sql()`` keyword arguments for customization is preferable to
  796. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  797. errors when running on different database backends. If your class relies on
  798. class attributes to define data, consider allowing overrides in your
  799. ``as_sql()`` method.
  800. We generate the SQL for each of the ``expressions`` by using the
  801. ``compiler.compile()`` method, and join the result together with commas.
  802. Then the template is filled out with our data and the SQL and parameters
  803. are returned.
  804. We've also defined a custom implementation that is specific to the Oracle
  805. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  806. if the Oracle backend is in use.
  807. Finally, we implement the rest of the methods that allow our query expression
  808. to play nice with other query expressions::
  809. def get_source_expressions(self):
  810. return self.expressions
  811. def set_source_expressions(self, expressions):
  812. self.expressions = expressions
  813. Let's see how it works::
  814. >>> from django.db.models import F, Value, CharField
  815. >>> qs = Company.objects.annotate(
  816. ... tagline=Coalesce([
  817. ... F('motto'),
  818. ... F('ticker_name'),
  819. ... F('description'),
  820. ... Value('No Tagline')
  821. ... ], output_field=CharField()))
  822. >>> for c in qs:
  823. ... print("%s: %s" % (c.name, c.tagline))
  824. ...
  825. Google: Do No Evil
  826. Apple: AAPL
  827. Yahoo: Internet Company
  828. Django Software Foundation: No Tagline
  829. .. _avoiding-sql-injection-in-query-expressions:
  830. Avoiding SQL injection
  831. ~~~~~~~~~~~~~~~~~~~~~~
  832. Since a ``Func``'s keyword arguments for ``__init__()`` (``**extra``) and
  833. ``as_sql()`` (``**extra_context``) are interpolated into the SQL string rather
  834. than passed as query parameters (where the database driver would escape them),
  835. they must not contain untrusted user input.
  836. For example, if ``substring`` is user-provided, this function is vulnerable to
  837. SQL injection::
  838. from django.db.models import Func
  839. class Position(Func):
  840. function = 'POSITION'
  841. template = "%(function)s('%(substring)s' in %(expressions)s)"
  842. def __init__(self, expression, substring):
  843. # substring=substring is an SQL injection vulnerability!
  844. super().__init__(expression, substring=substring)
  845. This function generates an SQL string without any parameters. Since
  846. ``substring`` is passed to ``super().__init__()`` as a keyword argument, it's
  847. interpolated into the SQL string before the query is sent to the database.
  848. Here's a corrected rewrite::
  849. class Position(Func):
  850. function = 'POSITION'
  851. arg_joiner = ' IN '
  852. def __init__(self, expression, substring):
  853. super().__init__(substring, expression)
  854. With ``substring`` instead passed as a positional argument, it'll be passed as
  855. a parameter in the database query.
  856. Adding support in third-party database backends
  857. -----------------------------------------------
  858. If you're using a database backend that uses a different SQL syntax for a
  859. certain function, you can add support for it by monkey patching a new method
  860. onto the function's class.
  861. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  862. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  863. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  864. class::
  865. from django.db.models.functions import Length
  866. def sqlserver_length(self, compiler, connection):
  867. return self.as_sql(compiler, connection, function='LEN')
  868. Length.as_sqlserver = sqlserver_length
  869. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  870. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  871. ``sqlserver`` for the backend.
  872. Third-party backends can register their functions in the top level
  873. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  874. file (or package) that is imported from the top level ``__init__.py``.
  875. For user projects wishing to patch the backend that they're using, this code
  876. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.