123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325 |
- .. _ref-gis-db-api:
- ======================
- GeoDjango Database API
- ======================
- .. module:: django.contrib.gis.db.models
- :synopsis: GeoDjango's database API.
- .. _spatial-backends:
- Spatial Backends
- ================
- .. versionadded:: 1.2
- In Django 1.2, support for :doc:`multiple databases </topics/db/multi-db>` was
- introduced. In order to support multiple databases, GeoDjango has segregated
- its functionality into full-fledged spatial database backends:
- * :mod:`django.contrib.gis.db.backends.postgis`
- * :mod:`django.contrib.gis.db.backends.mysql`
- * :mod:`django.contrib.gis.db.backends.oracle`
- * :mod:`django.contrib.gis.db.backends.spatialite`
- .. _mysql-spatial-limitations:
- MySQL Spatial Limitations
- -------------------------
- MySQL's spatial extensions only support bounding box operations
- (what MySQL calls minimum bounding rectangles, or MBR). Specifically,
- `MySQL does not conform to the OGC standard <http://dev.mysql.com/doc/refman/5.1/en/functions-that-test-spatial-relationships-between-geometries.html>`_:
- Currently, MySQL does not implement these functions
- [``Contains``, ``Crosses``, ``Disjoint``, ``Intersects``, ``Overlaps``,
- ``Touches``, ``Within``]
- according to the specification. Those that are implemented return
- the same result as the corresponding MBR-based functions.
- In other words, while spatial lookups such as :lookup:`contains <gis-contains>`
- are available in GeoDjango when using MySQL, the results returned are really
- equivalent to what would be returned when using :lookup:`bbcontains`
- on a different spatial backend.
- .. warning::
- True spatial indexes (R-trees) are only supported with
- MyISAM tables on MySQL. [#fnmysqlidx]_ In other words, when using
- MySQL spatial extensions you have to choose between fast spatial
- lookups and the integrity of your data -- MyISAM tables do
- not support transactions or foreign key constraints.
- Creating and Saving Geographic Models
- =====================================
- Here is an example of how to create a geometry object (assuming the ``Zipcode``
- model)::
- >>> from zipcode.models import Zipcode
- >>> z = Zipcode(code=77096, poly='POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
- >>> z.save()
- :class:`~django.contrib.gis.geos.GEOSGeometry` objects may also be used to save geometric models::
- >>> from django.contrib.gis.geos import GEOSGeometry
- >>> poly = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))')
- >>> z = Zipcode(code=77096, poly=poly)
- >>> z.save()
- Moreover, if the ``GEOSGeometry`` is in a different coordinate system (has a
- different SRID value) than that of the field, then it will be implicitly
- transformed into the SRID of the model's field, using the spatial database's
- transform procedure::
- >>> poly_3084 = GEOSGeometry('POLYGON(( 10 10, 10 20, 20 20, 20 15, 10 10))', srid=3084) # SRID 3084 is 'NAD83(HARN) / Texas Centric Lambert Conformal'
- >>> z = Zipcode(code=78212, poly=poly_3084)
- >>> z.save()
- >>> from django.db import connection
- >>> print connection.queries[-1]['sql'] # printing the last SQL statement executed (requires DEBUG=True)
- INSERT INTO "geoapp_zipcode" ("code", "poly") VALUES (78212, ST_Transform(ST_GeomFromWKB('\\001 ... ', 3084), 4326))
- Thus, geometry parameters may be passed in using the ``GEOSGeometry`` object, WKT
- (Well Known Text [#fnwkt]_), HEXEWKB (PostGIS specific -- a WKB geometry in
- hexadecimal [#fnewkb]_), and GeoJSON [#fngeojson]_ (requires GDAL). Essentially,
- if the input is not a ``GEOSGeometry`` object, the geometry field will attempt to
- create a ``GEOSGeometry`` instance from the input.
- For more information creating :class:`~django.contrib.gis.geos.GEOSGeometry`
- objects, refer to the :ref:`GEOS tutorial <geos-tutorial>`.
- .. _spatial-lookups-intro:
- Spatial Lookups
- ===============
- GeoDjango's lookup types may be used with any manager method like
- ``filter()``, ``exclude()``, etc. However, the lookup types unique to
- GeoDjango are only available on geometry fields.
- Filters on 'normal' fields (e.g. :class:`~django.db.models.CharField`)
- may be chained with those on geographic fields. Thus, geographic queries
- take the following general form (assuming the ``Zipcode`` model used in the
- :ref:`ref-gis-model-api`)::
- >>> qs = Zipcode.objects.filter(<field>__<lookup_type>=<parameter>)
- >>> qs = Zipcode.objects.exclude(...)
- For example::
- >>> qs = Zipcode.objects.filter(poly__contains=pnt)
- In this case, ``poly`` is the geographic field, :lookup:`contains <gis-contains>`
- is the spatial lookup type, and ``pnt`` is the parameter (which may be a
- :class:`~django.contrib.gis.geos.GEOSGeometry` object or a string of
- GeoJSON , WKT, or HEXEWKB).
- A complete reference can be found in the :ref:`spatial lookup reference
- <spatial-lookups>`.
- .. note::
- GeoDjango constructs spatial SQL with the :class:`GeoQuerySet`, a
- subclass of :class:`~django.db.models.query.QuerySet`. The
- :class:`GeoManager` instance attached to your model is what
- enables use of :class:`GeoQuerySet`.
- .. _distance-queries:
- Distance Queries
- ================
- Introduction
- ------------
- Distance calculations with spatial data is tricky because, unfortunately,
- the Earth is not flat. Some distance queries with fields in a geographic
- coordinate system may have to be expressed differently because of
- limitations in PostGIS. Please see the :ref:`selecting-an-srid` section
- in the :ref:`ref-gis-model-api` documentation for more details.
- .. _distance-lookups-intro:
- Distance Lookups
- ----------------
- *Availability*: PostGIS, Oracle, SpatiaLite
- The following distance lookups are available:
- * :lookup:`distance_lt`
- * :lookup:`distance_lte`
- * :lookup:`distance_gt`
- * :lookup:`distance_gte`
- * :lookup:`dwithin`
- .. note::
- For *measuring*, rather than querying on distances, use the
- :meth:`GeoQuerySet.distance` method.
- Distance lookups take a tuple parameter comprising:
- #. A geometry to base calculations from; and
- #. A number or :class:`~django.contrib.gis.measure.Distance` object containing the distance.
- If a :class:`~django.contrib.gis.measure.Distance` object is used,
- it may be expressed in any units (the SQL generated will use units
- converted to those of the field); otherwise, numeric parameters are assumed
- to be in the units of the field.
- .. note::
- For users of PostGIS 1.4 and below, the routine ``ST_Distance_Sphere``
- is used by default for calculating distances on geographic coordinate systems
- (e.g., WGS84) -- which may only be called with point geometries [#fndistsphere14]_.
- Thus, geographic distance lookups on traditional PostGIS geometry columns are
- only allowed on :class:`PointField` model fields using a point for the
- geometry parameter.
- .. note::
- In PostGIS 1.5, ``ST_Distance_Sphere`` does *not* limit the geometry types
- geographic distance queries are performed with. [#fndistsphere15]_ However,
- these queries may take a long time, as great-circle distances must be
- calculated on the fly for *every* row in the query. This is because the
- spatial index on traditional geometry fields cannot be used.
- For much better performance on WGS84 distance queries, consider using
- :ref:`geography columns <geography-type>` in your database instead because
- they are able to use their spatial index in distance queries.
- You can tell GeoDjango to use a geography column by setting ``geography=True``
- in your field definition.
- For example, let's say we have a ``SouthTexasCity`` model (from the
- `GeoDjango distance tests`__ ) on a *projected* coordinate system valid for cities
- in southern Texas::
- from django.contrib.gis.db import models
- class SouthTexasCity(models.Model):
- name = models.CharField(max_length=30)
- # A projected coordinate system (only valid for South Texas!)
- # is used, units are in meters.
- point = models.PointField(srid=32140)
- objects = models.GeoManager()
- Then distance queries may be performed as follows::
- >>> from django.contrib.gis.geos import *
- >>> from django.contrib.gis.measure import D # ``D`` is a shortcut for ``Distance``
- >>> from geoapp import SouthTexasCity
- # Distances will be calculated from this point, which does not have to be projected.
- >>> pnt = fromstr('POINT(-96.876369 29.905320)', srid=4326)
- # If numeric parameter, units of field (meters in this case) are assumed.
- >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, 7000))
- # Find all Cities within 7 km, > 20 miles away, and > 100 chains away (an obscure unit)
- >>> qs = SouthTexasCity.objects.filter(point__distance_lte=(pnt, D(km=7)))
- >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(mi=20)))
- >>> qs = SouthTexasCity.objects.filter(point__distance_gte=(pnt, D(chain=100)))
- __ http://code.djangoproject.com/browser/django/trunk/django/contrib/gis/tests/distapp/models.py
- .. _compatibility-table:
- Compatibility Tables
- ====================
- .. _spatial-lookup-compatibility:
- Spatial Lookups
- ---------------
- The following table provides a summary of what spatial lookups are available
- for each spatial database backend.
- ================================= ========= ======== ============ ==========
- Lookup Type PostGIS Oracle MySQL [#]_ SpatiaLite
- ================================= ========= ======== ============ ==========
- :lookup:`bbcontains` X X X
- :lookup:`bboverlaps` X X X
- :lookup:`contained` X X X
- :lookup:`contains <gis-contains>` X X X X
- :lookup:`contains_properly` X
- :lookup:`coveredby` X X
- :lookup:`covers` X X
- :lookup:`crosses` X X
- :lookup:`disjoint` X X X X
- :lookup:`distance_gt` X X X
- :lookup:`distance_gte` X X X
- :lookup:`distance_lt` X X X
- :lookup:`distance_lte` X X X
- :lookup:`dwithin` X X
- :lookup:`equals` X X X X
- :lookup:`exact` X X X X
- :lookup:`intersects` X X X X
- :lookup:`overlaps` X X X X
- :lookup:`relate` X X X
- :lookup:`same_as` X X X X
- :lookup:`touches` X X X X
- :lookup:`within` X X X X
- :lookup:`left` X
- :lookup:`right` X
- :lookup:`overlaps_left` X
- :lookup:`overlaps_right` X
- :lookup:`overlaps_above` X
- :lookup:`overlaps_below` X
- :lookup:`strictly_above` X
- :lookup:`strictly_below` X
- ================================= ========= ======== ============ ==========
- .. _geoqueryset-method-compatibility:
- ``GeoQuerySet`` Methods
- -----------------------
- The following table provides a summary of what :class:`GeoQuerySet` methods
- are available on each spatial backend. Please note that MySQL does not
- support any of these methods, and is thus excluded from the table.
- ==================================== ======= ====== ==========
- Method PostGIS Oracle SpatiaLite
- ==================================== ======= ====== ==========
- :meth:`GeoQuerySet.area` X X X
- :meth:`GeoQuerySet.centroid` X X X
- :meth:`GeoQuerySet.collect` X
- :meth:`GeoQuerySet.difference` X X X
- :meth:`GeoQuerySet.distance` X X X
- :meth:`GeoQuerySet.envelope` X X
- :meth:`GeoQuerySet.extent` X X
- :meth:`GeoQuerySet.extent3d` X
- :meth:`GeoQuerySet.force_rhr` X
- :meth:`GeoQuerySet.geohash` X
- :meth:`GeoQuerySet.geojson` X
- :meth:`GeoQuerySet.gml` X X X
- :meth:`GeoQuerySet.intersection` X X X
- :meth:`GeoQuerySet.kml` X X
- :meth:`GeoQuerySet.length` X X X
- :meth:`GeoQuerySet.make_line` X
- :meth:`GeoQuerySet.mem_size` X
- :meth:`GeoQuerySet.num_geom` X X X
- :meth:`GeoQuerySet.num_points` X X X
- :meth:`GeoQuerySet.perimeter` X X
- :meth:`GeoQuerySet.point_on_surface` X X X
- :meth:`GeoQuerySet.reverse_geom` X X
- :meth:`GeoQuerySet.scale` X X
- :meth:`GeoQuerySet.snap_to_grid` X
- :meth:`GeoQuerySet.svg` X X
- :meth:`GeoQuerySet.sym_difference` X X X
- :meth:`GeoQuerySet.transform` X X X
- :meth:`GeoQuerySet.translate` X X
- :meth:`GeoQuerySet.union` X X X
- :meth:`GeoQuerySet.unionagg` X X X
- ==================================== ======= ====== ==========
- .. rubric:: Footnotes
- .. [#fnwkt] *See* Open Geospatial Consortium, Inc., `OpenGIS Simple Feature Specification For SQL <http://www.opengis.org/docs/99-049.pdf>`_, Document 99-049 (May 5, 1999), at Ch. 3.2.5, p. 3-11 (SQL Textual Representation of Geometry).
- .. [#fnewkb] *See* `PostGIS EWKB, EWKT and Canonical Forms <http://postgis.refractions.net/documentation/manual-1.5/ch04.html#EWKB_EWKT>`_, PostGIS documentation at Ch. 4.1.2.
- .. [#fngeojson] *See* Howard Butler, Martin Daly, Allan Doyle, Tim Schaub, & Christopher Schmidt, `The GeoJSON Format Specification <http://geojson.org/geojson-spec.html>`_, Revision 1.0 (June 16, 2008).
- .. [#fndistsphere14] *See* `PostGIS 1.4 documentation <http://postgis.refractions.net/documentation/manual-1.4/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
- .. [#fndistsphere15] *See* `PostGIS 1.5 documentation <http://postgis.refractions.net/documentation/manual-1.5/ST_Distance_Sphere.html>`_ on ``ST_distance_sphere``.
- .. [#fnmysqlidx] *See* `Creating Spatial Indexes <http://dev.mysql.com/doc/refman/5.1/en/creating-spatial-indexes.html>`_
- in the MySQL 5.1 Reference Manual:
- For MyISAM tables, ``SPATIAL INDEX`` creates an R-tree index. For storage
- engines that support nonspatial indexing of spatial columns, the engine
- creates a B-tree index. A B-tree index on spatial values will be useful
- for exact-value lookups, but not for range scans.
- .. [#] Refer :ref:`mysql-spatial-limitations` section for more details.
|