language.txt 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. ============================
  2. The Django template language
  3. ============================
  4. This document explains the language syntax of the Django template system. If
  5. you're looking for a more technical perspective on how it works and how to
  6. extend it, see :doc:`/ref/templates/api`.
  7. Django's template language is designed to strike a balance between power and
  8. ease. It's designed to feel comfortable to those used to working with HTML. If
  9. you have any exposure to other text-based template languages, such as Smarty_
  10. or Jinja2_, you should feel right at home with Django's templates.
  11. .. admonition:: Philosophy
  12. If you have a background in programming, or if you're used to languages
  13. which mix programming code directly into HTML, you'll want to bear in
  14. mind that the Django template system is not simply Python embedded into
  15. HTML. This is by design: the template system is meant to express
  16. presentation, not program logic.
  17. The Django template system provides tags which function similarly to some
  18. programming constructs -- an :ttag:`if` tag for boolean tests, a :ttag:`for`
  19. tag for looping, etc. -- but these are not simply executed as the
  20. corresponding Python code, and the template system will not execute
  21. arbitrary Python expressions. Only the tags, filters and syntax listed below
  22. are supported by default (although you can add :doc:`your own extensions
  23. </howto/custom-template-tags>` to the template language as needed).
  24. .. _`The Django template language: For Python programmers`: ../templates_python/
  25. .. _Smarty: https://www.smarty.net/
  26. .. _Jinja2: https://palletsprojects.com/p/jinja/
  27. Templates
  28. =========
  29. .. highlight:: html+django
  30. A template is a text file. It can generate any text-based format (HTML, XML,
  31. CSV, etc.).
  32. A template contains **variables**, which get replaced with values when the
  33. template is evaluated, and **tags**, which control the logic of the template.
  34. Below is a minimal template that illustrates a few basics. Each element will be
  35. explained later in this document.
  36. .. code-block:: html+django
  37. {% extends "base_generic.html" %}
  38. {% block title %}{{ section.title }}{% endblock %}
  39. {% block content %}
  40. <h1>{{ section.title }}</h1>
  41. {% for story in story_list %}
  42. <h2>
  43. <a href="{{ story.get_absolute_url }}">
  44. {{ story.headline|upper }}
  45. </a>
  46. </h2>
  47. <p>{{ story.tease|truncatewords:"100" }}</p>
  48. {% endfor %}
  49. {% endblock %}
  50. .. admonition:: Philosophy
  51. Why use a text-based template instead of an XML-based one (like Zope's
  52. TAL)? We wanted Django's template language to be usable for more than
  53. just XML/HTML templates. You can use the template language for any
  54. text-based format such as emails, JavaScript and CSV.
  55. .. _template-variables:
  56. Variables
  57. =========
  58. Variables look like this: ``{{ variable }}``. When the template engine
  59. encounters a variable, it evaluates that variable and replaces it with the
  60. result. Variable names consist of any combination of alphanumeric characters
  61. and the underscore (``"_"``) but may not start with an underscore, and may not
  62. be a number. The dot (``"."``) also appears in variable sections, although that
  63. has a special meaning, as indicated below. Importantly, *you cannot have spaces
  64. or punctuation characters in variable names.*
  65. Use a dot (``.``) to access attributes of a variable.
  66. .. admonition:: Behind the scenes
  67. Technically, when the template system encounters a dot, it tries the
  68. following lookups, in this order:
  69. * Dictionary lookup
  70. * Attribute or method lookup
  71. * Numeric index lookup
  72. If the resulting value is callable, it is called with no arguments. The
  73. result of the call becomes the template value.
  74. This lookup order can cause some unexpected behavior with objects that
  75. override dictionary lookup. For example, consider the following code snippet
  76. that attempts to loop over a ``collections.defaultdict``::
  77. {% for k, v in defaultdict.items %}
  78. Do something with k and v here...
  79. {% endfor %}
  80. Because dictionary lookup happens first, that behavior kicks in and provides
  81. a default value instead of using the intended ``.items()`` method. In this
  82. case, consider converting to a dictionary first.
  83. In the above example, ``{{ section.title }}`` will be replaced with the
  84. ``title`` attribute of the ``section`` object.
  85. If you use a variable that doesn't exist, the template system will insert the
  86. value of the ``string_if_invalid`` option, which is set to ``''`` (the empty
  87. string) by default.
  88. Note that "bar" in a template expression like ``{{ foo.bar }}`` will be
  89. interpreted as a literal string and not using the value of the variable "bar",
  90. if one exists in the template context.
  91. Variable attributes that begin with an underscore may not be accessed as
  92. they're generally considered private.
  93. Filters
  94. =======
  95. You can modify variables for display by using **filters**.
  96. Filters look like this: ``{{ name|lower }}``. This displays the value of the
  97. ``{{ name }}`` variable after being filtered through the :tfilter:`lower`
  98. filter, which converts text to lowercase. Use a pipe (``|``) to apply a filter.
  99. Filters can be "chained." The output of one filter is applied to the next.
  100. ``{{ text|escape|linebreaks }}`` is a common idiom for escaping text contents,
  101. then converting line breaks to ``<p>`` tags.
  102. Some filters take arguments. A filter argument looks like this: ``{{
  103. bio|truncatewords:30 }}``. This will display the first 30 words of the ``bio``
  104. variable.
  105. Filter arguments that contain spaces must be quoted; for example, to join a
  106. list with commas and spaces you'd use ``{{ list|join:", " }}``.
  107. Django provides about sixty built-in template filters. You can read all about
  108. them in the :ref:`built-in filter reference <ref-templates-builtins-filters>`.
  109. To give you a taste of what's available, here are some of the more commonly
  110. used template filters:
  111. :tfilter:`default`
  112. If a variable is false or empty, use given default. Otherwise, use the
  113. value of the variable. For example::
  114. {{ value|default:"nothing" }}
  115. If ``value`` isn't provided or is empty, the above will display
  116. "``nothing``".
  117. :tfilter:`length`
  118. Returns the length of the value. This works for both strings and lists.
  119. For example::
  120. {{ value|length }}
  121. If ``value`` is ``['a', 'b', 'c', 'd']``, the output will be ``4``.
  122. :tfilter:`filesizeformat`
  123. Formats the value like a "human-readable" file size (i.e. ``'13 KB'``,
  124. ``'4.1 MB'``, ``'102 bytes'``, etc.). For example::
  125. {{ value|filesizeformat }}
  126. If ``value`` is 123456789, the output would be ``117.7 MB``.
  127. Again, these are just a few examples; see the :ref:`built-in filter reference
  128. <ref-templates-builtins-filters>` for the complete list.
  129. You can also create your own custom template filters; see
  130. :doc:`/howto/custom-template-tags`.
  131. .. seealso::
  132. Django's admin interface can include a complete reference of all template
  133. tags and filters available for a given site. See
  134. :doc:`/ref/contrib/admin/admindocs`.
  135. Tags
  136. ====
  137. Tags look like this: ``{% tag %}``. Tags are more complex than variables: Some
  138. create text in the output, some control flow by performing loops or logic, and
  139. some load external information into the template to be used by later variables.
  140. Some tags require beginning and ending tags (i.e. ``{% tag %} ... tag contents
  141. ... {% endtag %}``).
  142. Django ships with about two dozen built-in template tags. You can read all about
  143. them in the :ref:`built-in tag reference <ref-templates-builtins-tags>`. To give
  144. you a taste of what's available, here are some of the more commonly used
  145. tags:
  146. :ttag:`for`
  147. Loop over each item in an array. For example, to display a list of athletes
  148. provided in ``athlete_list``::
  149. <ul>
  150. {% for athlete in athlete_list %}
  151. <li>{{ athlete.name }}</li>
  152. {% endfor %}
  153. </ul>
  154. :ttag:`if`, ``elif``, and ``else``
  155. Evaluates a variable, and if that variable is "true" the contents of the
  156. block are displayed::
  157. {% if athlete_list %}
  158. Number of athletes: {{ athlete_list|length }}
  159. {% elif athlete_in_locker_room_list %}
  160. Athletes should be out of the locker room soon!
  161. {% else %}
  162. No athletes.
  163. {% endif %}
  164. In the above, if ``athlete_list`` is not empty, the number of athletes
  165. will be displayed by the ``{{ athlete_list|length }}`` variable. Otherwise,
  166. if ``athlete_in_locker_room_list`` is not empty, the message "Athletes
  167. should be out..." will be displayed. If both lists are empty,
  168. "No athletes." will be displayed.
  169. You can also use filters and various operators in the :ttag:`if` tag::
  170. {% if athlete_list|length > 1 %}
  171. Team: {% for athlete in athlete_list %} ... {% endfor %}
  172. {% else %}
  173. Athlete: {{ athlete_list.0.name }}
  174. {% endif %}
  175. While the above example works, be aware that most template filters return
  176. strings, so mathematical comparisons using filters will generally not work
  177. as you expect. :tfilter:`length` is an exception.
  178. :ttag:`block` and :ttag:`extends`
  179. Set up `template inheritance`_ (see below), a powerful way
  180. of cutting down on "boilerplate" in templates.
  181. Again, the above is only a selection of the whole list; see the :ref:`built-in
  182. tag reference <ref-templates-builtins-tags>` for the complete list.
  183. You can also create your own custom template tags; see
  184. :doc:`/howto/custom-template-tags`.
  185. .. seealso::
  186. Django's admin interface can include a complete reference of all template
  187. tags and filters available for a given site. See
  188. :doc:`/ref/contrib/admin/admindocs`.
  189. .. _template-comments:
  190. Comments
  191. ========
  192. To comment-out part of a line in a template, use the comment syntax: ``{# #}``.
  193. For example, this template would render as ``'hello'``::
  194. {# greeting #}hello
  195. A comment can contain any template code, invalid or not. For example::
  196. {# {% if foo %}bar{% else %} #}
  197. This syntax can only be used for single-line comments (no newlines are permitted
  198. between the ``{#`` and ``#}`` delimiters). If you need to comment out a
  199. multiline portion of the template, see the :ttag:`comment` tag.
  200. .. _template-inheritance:
  201. Template inheritance
  202. ====================
  203. The most powerful -- and thus the most complex -- part of Django's template
  204. engine is template inheritance. Template inheritance allows you to build a base
  205. "skeleton" template that contains all the common elements of your site and
  206. defines **blocks** that child templates can override.
  207. Let's look at template inheritance by starting with an example::
  208. <!DOCTYPE html>
  209. <html lang="en">
  210. <head>
  211. <link rel="stylesheet" href="style.css">
  212. <title>{% block title %}My amazing site{% endblock %}</title>
  213. </head>
  214. <body>
  215. <div id="sidebar">
  216. {% block sidebar %}
  217. <ul>
  218. <li><a href="/">Home</a></li>
  219. <li><a href="/blog/">Blog</a></li>
  220. </ul>
  221. {% endblock %}
  222. </div>
  223. <div id="content">
  224. {% block content %}{% endblock %}
  225. </div>
  226. </body>
  227. </html>
  228. This template, which we'll call ``base.html``, defines an HTML skeleton
  229. document that you might use for a two-column page. It's the job of "child"
  230. templates to fill the empty blocks with content.
  231. In this example, the :ttag:`block` tag defines three blocks that child
  232. templates can fill in. All the :ttag:`block` tag does is to tell the template
  233. engine that a child template may override those portions of the template.
  234. A child template might look like this::
  235. {% extends "base.html" %}
  236. {% block title %}My amazing blog{% endblock %}
  237. {% block content %}
  238. {% for entry in blog_entries %}
  239. <h2>{{ entry.title }}</h2>
  240. <p>{{ entry.body }}</p>
  241. {% endfor %}
  242. {% endblock %}
  243. The :ttag:`extends` tag is the key here. It tells the template engine that
  244. this template "extends" another template. When the template system evaluates
  245. this template, first it locates the parent -- in this case, "base.html".
  246. At that point, the template engine will notice the three :ttag:`block` tags
  247. in ``base.html`` and replace those blocks with the contents of the child
  248. template. Depending on the value of ``blog_entries``, the output might look
  249. like::
  250. <!DOCTYPE html>
  251. <html lang="en">
  252. <head>
  253. <link rel="stylesheet" href="style.css">
  254. <title>My amazing blog</title>
  255. </head>
  256. <body>
  257. <div id="sidebar">
  258. <ul>
  259. <li><a href="/">Home</a></li>
  260. <li><a href="/blog/">Blog</a></li>
  261. </ul>
  262. </div>
  263. <div id="content">
  264. <h2>Entry one</h2>
  265. <p>This is my first entry.</p>
  266. <h2>Entry two</h2>
  267. <p>This is my second entry.</p>
  268. </div>
  269. </body>
  270. </html>
  271. Note that since the child template didn't define the ``sidebar`` block, the
  272. value from the parent template is used instead. Content within a ``{% block %}``
  273. tag in a parent template is always used as a fallback.
  274. You can use as many levels of inheritance as needed. One common way of using
  275. inheritance is the following three-level approach:
  276. * Create a ``base.html`` template that holds the main look-and-feel of your
  277. site.
  278. * Create a ``base_SECTIONNAME.html`` template for each "section" of your
  279. site. For example, ``base_news.html``, ``base_sports.html``. These
  280. templates all extend ``base.html`` and include section-specific
  281. styles/design.
  282. * Create individual templates for each type of page, such as a news
  283. article or blog entry. These templates extend the appropriate section
  284. template.
  285. This approach maximizes code reuse and helps to add items to shared content
  286. areas, such as section-wide navigation.
  287. Here are some tips for working with inheritance:
  288. * If you use :ttag:`{% extends %}<extends>` in a template, it must be the first template
  289. tag in that template. Template inheritance won't work, otherwise.
  290. * More :ttag:`{% block %}<block>` tags in your base templates are better. Remember,
  291. child templates don't have to define all parent blocks, so you can fill
  292. in reasonable defaults in a number of blocks, then only define the ones
  293. you need later. It's better to have more hooks than fewer hooks.
  294. * If you find yourself duplicating content in a number of templates, it
  295. probably means you should move that content to a ``{% block %}`` in a
  296. parent template.
  297. * If you need to get the content of the block from the parent template,
  298. the ``{{ block.super }}`` variable will do the trick. This is useful
  299. if you want to add to the contents of a parent block instead of
  300. completely overriding it. Data inserted using ``{{ block.super }}`` will
  301. not be automatically escaped (see the `next section`_), since it was
  302. already escaped, if necessary, in the parent template.
  303. * By using the same template name as you are inheriting from,
  304. :ttag:`{% extends %}<extends>` can be used to inherit a template at the same
  305. time as overriding it. Combined with ``{{ block.super }}``, this can be a
  306. powerful way to make small customizations. See
  307. :ref:`extending_an_overridden_template` in the *Overriding templates* How-to
  308. for a full example.
  309. * Variables created outside of a :ttag:`{% block %}<block>` using the template
  310. tag ``as`` syntax can't be used inside the block. For example, this template
  311. doesn't render anything::
  312. {% translate "Title" as title %}
  313. {% block content %}{{ title }}{% endblock %}
  314. * For extra readability, you can optionally give a *name* to your
  315. ``{% endblock %}`` tag. For example::
  316. {% block content %}
  317. ...
  318. {% endblock content %}
  319. In larger templates, this technique helps you see which ``{% block %}``
  320. tags are being closed.
  321. * :ttag:`{% block %}<block>` tags are evaluated first. That's why the content
  322. of a block is always overridden, regardless of the truthiness of surrounding
  323. tags. For example, this template will *always* override the content of the
  324. ``title`` block::
  325. {% if change_title %}
  326. {% block title %}Hello!{% endblock title %}
  327. {% endif %}
  328. Finally, note that you can't define multiple :ttag:`block` tags with the same
  329. name in the same template. This limitation exists because a block tag works in
  330. "both" directions. That is, a block tag doesn't just provide a hole to fill --
  331. it also defines the content that fills the hole in the *parent*. If there were
  332. two similarly-named :ttag:`block` tags in a template, that template's parent
  333. wouldn't know which one of the blocks' content to use.
  334. .. _next section: #automatic-html-escaping
  335. .. _automatic-html-escaping:
  336. Automatic HTML escaping
  337. =======================
  338. When generating HTML from templates, there's always a risk that a variable will
  339. include characters that affect the resulting HTML. For example, consider this
  340. template fragment::
  341. Hello, {{ name }}
  342. At first, this seems like a harmless way to display a user's name, but consider
  343. what would happen if the user entered their name as this::
  344. <script>alert('hello')</script>
  345. With this name value, the template would be rendered as::
  346. Hello, <script>alert('hello')</script>
  347. ...which means the browser would pop-up a JavaScript alert box!
  348. Similarly, what if the name contained a ``'<'`` symbol, like this?
  349. .. code-block:: html
  350. <b>username
  351. That would result in a rendered template like this::
  352. Hello, <b>username
  353. ...which, in turn, would result in the remainder of the web page being in bold!
  354. Clearly, user-submitted data shouldn't be trusted blindly and inserted directly
  355. into your web pages, because a malicious user could use this kind of hole to
  356. do potentially bad things. This type of security exploit is called a
  357. `Cross Site Scripting`_ (XSS) attack.
  358. To avoid this problem, you have two options:
  359. * One, you can make sure to run each untrusted variable through the
  360. :tfilter:`escape` filter (documented below), which converts potentially
  361. harmful HTML characters to unharmful ones. This was the default solution
  362. in Django for its first few years, but the problem is that it puts the
  363. onus on *you*, the developer / template author, to ensure you're escaping
  364. everything. It's easy to forget to escape data.
  365. * Two, you can take advantage of Django's automatic HTML escaping. The
  366. remainder of this section describes how auto-escaping works.
  367. By default in Django, every template automatically escapes the output
  368. of every variable tag. Specifically, these five characters are
  369. escaped:
  370. * ``<`` is converted to ``&lt;``
  371. * ``>`` is converted to ``&gt;``
  372. * ``'`` (single quote) is converted to ``&#x27;``
  373. * ``"`` (double quote) is converted to ``&quot;``
  374. * ``&`` is converted to ``&amp;``
  375. Again, we stress that this behavior is on by default. If you're using Django's
  376. template system, you're protected.
  377. .. _Cross Site Scripting: https://en.wikipedia.org/wiki/Cross-site_scripting
  378. How to turn it off
  379. ------------------
  380. If you don't want data to be auto-escaped, on a per-site, per-template level or
  381. per-variable level, you can turn it off in several ways.
  382. Why would you want to turn it off? Because sometimes, template variables
  383. contain data that you *intend* to be rendered as raw HTML, in which case you
  384. don't want their contents to be escaped. For example, you might store a blob of
  385. HTML in your database and want to embed that directly into your template. Or,
  386. you might be using Django's template system to produce text that is *not* HTML
  387. -- like an email message, for instance.
  388. For individual variables
  389. ~~~~~~~~~~~~~~~~~~~~~~~~
  390. To disable auto-escaping for an individual variable, use the :tfilter:`safe`
  391. filter::
  392. This will be escaped: {{ data }}
  393. This will not be escaped: {{ data|safe }}
  394. Think of *safe* as shorthand for *safe from further escaping* or *can be
  395. safely interpreted as HTML*. In this example, if ``data`` contains ``'<b>'``,
  396. the output will be::
  397. This will be escaped: &lt;b&gt;
  398. This will not be escaped: <b>
  399. For template blocks
  400. ~~~~~~~~~~~~~~~~~~~
  401. To control auto-escaping for a template, wrap the template (or a particular
  402. section of the template) in the :ttag:`autoescape` tag, like so::
  403. {% autoescape off %}
  404. Hello {{ name }}
  405. {% endautoescape %}
  406. The :ttag:`autoescape` tag takes either ``on`` or ``off`` as its argument. At
  407. times, you might want to force auto-escaping when it would otherwise be
  408. disabled. Here is an example template::
  409. Auto-escaping is on by default. Hello {{ name }}
  410. {% autoescape off %}
  411. This will not be auto-escaped: {{ data }}.
  412. Nor this: {{ other_data }}
  413. {% autoescape on %}
  414. Auto-escaping applies again: {{ name }}
  415. {% endautoescape %}
  416. {% endautoescape %}
  417. The auto-escaping tag passes its effect onto templates that extend the
  418. current one as well as templates included via the :ttag:`include` tag,
  419. just like all block tags. For example:
  420. .. code-block:: html+django
  421. :caption: ``base.html``
  422. {% autoescape off %}
  423. <h1>{% block title %}{% endblock %}</h1>
  424. {% block content %}
  425. {% endblock %}
  426. {% endautoescape %}
  427. .. code-block:: html+django
  428. :caption: ``child.html``
  429. {% extends "base.html" %}
  430. {% block title %}This &amp; that{% endblock %}
  431. {% block content %}{{ greeting }}{% endblock %}
  432. Because auto-escaping is turned off in the base template, it will also be
  433. turned off in the child template, resulting in the following rendered
  434. HTML when the ``greeting`` variable contains the string ``<b>Hello!</b>``::
  435. <h1>This &amp; that</h1>
  436. <b>Hello!</b>
  437. Notes
  438. -----
  439. Generally, template authors don't need to worry about auto-escaping very much.
  440. Developers on the Python side (people writing views and custom filters) need to
  441. think about the cases in which data shouldn't be escaped, and mark data
  442. appropriately, so things Just Work in the template.
  443. If you're creating a template that might be used in situations where you're
  444. not sure whether auto-escaping is enabled, then add an :tfilter:`escape` filter
  445. to any variable that needs escaping. When auto-escaping is on, there's no
  446. danger of the :tfilter:`escape` filter *double-escaping* data -- the
  447. :tfilter:`escape` filter does not affect auto-escaped variables.
  448. .. _string-literals-and-automatic-escaping:
  449. String literals and automatic escaping
  450. --------------------------------------
  451. As we mentioned earlier, filter arguments can be strings::
  452. {{ data|default:"This is a string literal." }}
  453. All string literals are inserted **without** any automatic escaping into the
  454. template -- they act as if they were all passed through the :tfilter:`safe`
  455. filter. The reasoning behind this is that the template author is in control of
  456. what goes into the string literal, so they can make sure the text is correctly
  457. escaped when the template is written.
  458. This means you would write ::
  459. {{ data|default:"3 &lt; 2" }}
  460. ...rather than::
  461. {{ data|default:"3 < 2" }} {# Bad! Don't do this. #}
  462. This doesn't affect what happens to data coming from the variable itself.
  463. The variable's contents are still automatically escaped, if necessary, because
  464. they're beyond the control of the template author.
  465. .. _template-accessing-methods:
  466. Accessing method calls
  467. ======================
  468. Most method calls attached to objects are also available from within templates.
  469. This means that templates have access to much more than just class attributes
  470. (like field names) and variables passed in from views. For example, the Django
  471. ORM provides the :ref:`"entry_set"<topics-db-queries-related>` syntax for
  472. finding a collection of objects related on a foreign key. Therefore, given
  473. a model called "comment" with a foreign key relationship to a model called
  474. "task" you can loop through all comments attached to a given task like this::
  475. {% for comment in task.comment_set.all %}
  476. {{ comment }}
  477. {% endfor %}
  478. Similarly, :doc:`QuerySets</ref/models/querysets>` provide a ``count()`` method
  479. to count the number of objects they contain. Therefore, you can obtain a count
  480. of all comments related to the current task with::
  481. {{ task.comment_set.all.count }}
  482. You can also access methods you've explicitly defined on your own models:
  483. .. code-block:: python
  484. :caption: ``models.py``
  485. class Task(models.Model):
  486. def foo(self):
  487. return "bar"
  488. .. code-block:: html+django
  489. :caption: ``template.html``
  490. {{ task.foo }}
  491. Because Django intentionally limits the amount of logic processing available
  492. in the template language, it is not possible to pass arguments to method calls
  493. accessed from within templates. Data should be calculated in views, then passed
  494. to templates for display.
  495. .. _loading-custom-template-libraries:
  496. Custom tag and filter libraries
  497. ===============================
  498. Certain applications provide custom tag and filter libraries. To access them in
  499. a template, ensure the application is in :setting:`INSTALLED_APPS` (we'd add
  500. ``'django.contrib.humanize'`` for this example), and then use the :ttag:`load`
  501. tag in a template::
  502. {% load humanize %}
  503. {{ 45000|intcomma }}
  504. In the above, the :ttag:`load` tag loads the ``humanize`` tag library, which then
  505. makes the ``intcomma`` filter available for use. If you've enabled
  506. :mod:`django.contrib.admindocs`, you can consult the documentation area in your
  507. admin to find the list of custom libraries in your installation.
  508. The :ttag:`load` tag can take multiple library names, separated by spaces.
  509. Example::
  510. {% load humanize i18n %}
  511. See :doc:`/howto/custom-template-tags` for information on writing your own custom
  512. template libraries.
  513. Custom libraries and template inheritance
  514. -----------------------------------------
  515. When you load a custom tag or filter library, the tags/filters are only made
  516. available to the current template -- not any parent or child templates along
  517. the template-inheritance path.
  518. For example, if a template ``foo.html`` has ``{% load humanize %}``, a child
  519. template (e.g., one that has ``{% extends "foo.html" %}``) will *not* have
  520. access to the humanize template tags and filters. The child template is
  521. responsible for its own ``{% load humanize %}``.
  522. This is a feature for the sake of maintainability and sanity.
  523. .. seealso::
  524. :doc:`The Templates Reference </ref/templates/index>`
  525. Covers built-in tags, built-in filters, using an alternative template
  526. language, and more.