expressions.txt 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. There are a
  7. number of built-in expressions (documented below) that can be used to help you
  8. write queries. Expressions can be combined, or in some cases nested, to form
  9. more complex computations.
  10. Supported arithmetic
  11. ====================
  12. Django supports addition, subtraction, multiplication, division, modulo
  13. arithmetic, and the power operator on query expressions, using Python constants,
  14. variables, and even other expressions.
  15. Some examples
  16. =============
  17. .. code-block:: python
  18. from django.db.models import F, Count, Value
  19. from django.db.models.functions import Length, Upper
  20. # Find companies that have more employees than chairs.
  21. Company.objects.filter(num_employees__gt=F('num_chairs'))
  22. # Find companies that have at least twice as many employees
  23. # as chairs. Both the querysets below are equivalent.
  24. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  25. Company.objects.filter(
  26. num_employees__gt=F('num_chairs') + F('num_chairs'))
  27. # How many chairs are needed for each company to seat all employees?
  28. >>> company = Company.objects.filter(
  29. ... num_employees__gt=F('num_chairs')).annotate(
  30. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  31. >>> company.num_employees
  32. 120
  33. >>> company.num_chairs
  34. 50
  35. >>> company.chairs_needed
  36. 70
  37. # Create a new company using expressions.
  38. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  39. # Be sure to refresh it if you need to access the field.
  40. >>> company.refresh_from_db()
  41. >>> company.ticker
  42. 'GOOG'
  43. # Annotate models with an aggregated value. Both forms
  44. # below are equivalent.
  45. Company.objects.annotate(num_products=Count('products'))
  46. Company.objects.annotate(num_products=Count(F('products')))
  47. # Aggregates can contain complex computations also
  48. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  49. # Expressions can also be used in order_by()
  50. Company.objects.order_by(Length('name').asc())
  51. Company.objects.order_by(Length('name').desc())
  52. Built-in Expressions
  53. ====================
  54. .. note::
  55. These expressions are defined in ``django.db.models.expressions`` and
  56. ``django.db.models.aggregates``, but for convenience they're available and
  57. usually imported from :mod:`django.db.models`.
  58. ``F()`` expressions
  59. -------------------
  60. .. class:: F
  61. An ``F()`` object represents the value of a model field or annotated column. It
  62. makes it possible to refer to model field values and perform database
  63. operations using them without actually having to pull them out of the database
  64. into Python memory.
  65. Instead, Django uses the ``F()`` object to generate an SQL expression that
  66. describes the required operation at the database level.
  67. This is easiest to understand through an example. Normally, one might do
  68. something like this::
  69. # Tintin filed a news story!
  70. reporter = Reporters.objects.get(name='Tintin')
  71. reporter.stories_filed += 1
  72. reporter.save()
  73. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  74. into memory and manipulated it using familiar Python operators, and then saved
  75. the object back to the database. But instead we could also have done::
  76. from django.db.models import F
  77. reporter = Reporters.objects.get(name='Tintin')
  78. reporter.stories_filed = F('stories_filed') + 1
  79. reporter.save()
  80. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  81. normal Python assignment of value to an instance attribute, in fact it's an SQL
  82. construct describing an operation on the database.
  83. When Django encounters an instance of ``F()``, it overrides the standard Python
  84. operators to create an encapsulated SQL expression; in this case, one which
  85. instructs the database to increment the database field represented by
  86. ``reporter.stories_filed``.
  87. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  88. know about it - it is dealt with entirely by the database. All Python does,
  89. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  90. and describe the operation.
  91. To access the new value saved this way, the object must be reloaded::
  92. reporter = Reporters.objects.get(pk=reporter.pk)
  93. # Or, more succinctly:
  94. reporter.refresh_from_db()
  95. As well as being used in operations on single instances as above, ``F()`` can
  96. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  97. the two queries we were using above - the ``get()`` and the
  98. :meth:`~Model.save()` - to just one::
  99. reporter = Reporters.objects.filter(name='Tintin')
  100. reporter.update(stories_filed=F('stories_filed') + 1)
  101. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  102. the field value on multiple objects - which could be very much faster than
  103. pulling them all into Python from the database, looping over them, incrementing
  104. the field value of each one, and saving each one back to the database::
  105. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  106. ``F()`` therefore can offer performance advantages by:
  107. * getting the database, rather than Python, to do work
  108. * reducing the number of queries some operations require
  109. .. _avoiding-race-conditions-using-f:
  110. Avoiding race conditions using ``F()``
  111. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  112. Another useful benefit of ``F()`` is that having the database - rather than
  113. Python - update a field's value avoids a *race condition*.
  114. If two Python threads execute the code in the first example above, one thread
  115. could retrieve, increment, and save a field's value after the other has
  116. retrieved it from the database. The value that the second thread saves will be
  117. based on the original value; the work of the first thread will simply be lost.
  118. If the database is responsible for updating the field, the process is more
  119. robust: it will only ever update the field based on the value of the field in
  120. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  121. than based on its value when the instance was retrieved.
  122. ``F()`` assignments persist after ``Model.save()``
  123. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  124. ``F()`` objects assigned to model fields persist after saving the model
  125. instance and will be applied on each :meth:`~Model.save()`. For example::
  126. reporter = Reporters.objects.get(name='Tintin')
  127. reporter.stories_filed = F('stories_filed') + 1
  128. reporter.save()
  129. reporter.name = 'Tintin Jr.'
  130. reporter.save()
  131. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  132. the final value will be ``3``.
  133. Using ``F()`` in filters
  134. ~~~~~~~~~~~~~~~~~~~~~~~~
  135. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  136. possible to filter a set of objects against criteria based on their field
  137. values, rather than on Python values.
  138. This is documented in :ref:`using F() expressions in queries
  139. <using-f-expressions-in-filters>`.
  140. .. _using-f-with-annotations:
  141. Using ``F()`` with annotations
  142. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  143. ``F()`` can be used to create dynamic fields on your models by combining
  144. different fields with arithmetic::
  145. company = Company.objects.annotate(
  146. chairs_needed=F('num_employees') - F('num_chairs'))
  147. If the fields that you're combining are of different types you'll need
  148. to tell Django what kind of field will be returned. Since ``F()`` does not
  149. directly support ``output_field`` you will need to wrap the expression with
  150. :class:`ExpressionWrapper`::
  151. from django.db.models import DateTimeField, ExpressionWrapper, F
  152. Ticket.objects.annotate(
  153. expires=ExpressionWrapper(
  154. F('active_at') + F('duration'), output_field=DateTimeField()))
  155. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  156. primary key value rather than a model instance::
  157. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  158. >> car.manufacturer
  159. <Manufacturer: Toyota>
  160. >> car.built_by
  161. 3
  162. .. _func-expressions:
  163. ``Func()`` expressions
  164. ----------------------
  165. ``Func()`` expressions are the base type of all expressions that involve
  166. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  167. They can be used directly::
  168. from django.db.models import Func, F
  169. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  170. or they can be used to build a library of database functions::
  171. class Lower(Func):
  172. function = 'LOWER'
  173. queryset.annotate(field_lower=Lower('field'))
  174. But both cases will result in a queryset where each model is annotated with an
  175. extra attribute ``field_lower`` produced, roughly, from the following SQL::
  176. SELECT
  177. ...
  178. LOWER("db_table"."field") as "field_lower"
  179. See :doc:`database-functions` for a list of built-in database functions.
  180. The ``Func`` API is as follows:
  181. .. class:: Func(*expressions, **extra)
  182. .. attribute:: function
  183. A class attribute describing the function that will be generated.
  184. Specifically, the ``function`` will be interpolated as the ``function``
  185. placeholder within :attr:`template`. Defaults to ``None``.
  186. .. attribute:: template
  187. A class attribute, as a format string, that describes the SQL that is
  188. generated for this function. Defaults to
  189. ``'%(function)s(%(expressions)s)'``.
  190. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  191. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  192. ``template`` attribute because the string is interpolated twice: once
  193. during the template interpolation in ``as_sql()`` and once in the SQL
  194. interpolation with the query parameters in the database cursor.
  195. .. attribute:: arg_joiner
  196. A class attribute that denotes the character used to join the list of
  197. ``expressions`` together. Defaults to ``', '``.
  198. .. attribute:: arity
  199. A class attribute that denotes the number of arguments the function
  200. accepts. If this attribute is set and the function is called with a
  201. different number of expressions, ``TypeError`` will be raised. Defaults
  202. to ``None``.
  203. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  204. Generates the SQL for the database function.
  205. The ``as_vendor()`` methods should use the ``function``, ``template``,
  206. ``arg_joiner``, and any other ``**extra_context`` parameters to
  207. customize the SQL as needed. For example:
  208. .. snippet::
  209. :filename: django/db/models/functions.py
  210. class ConcatPair(Func):
  211. ...
  212. function = 'CONCAT'
  213. ...
  214. def as_mysql(self, compiler, connection):
  215. return super().as_sql(
  216. compiler, connection,
  217. function='CONCAT_WS',
  218. template="%(function)s('', %(expressions)s)",
  219. )
  220. To avoid a SQL injection vulnerability, ``extra_context`` :ref:`must
  221. not contain untrusted user input <avoiding-sql-injection-in-query-expressions>`
  222. as these values are interpolated into the SQL string rather than passed
  223. as query parameters, where the database driver would escape them.
  224. The ``*expressions`` argument is a list of positional expressions that the
  225. function will be applied to. The expressions will be converted to strings,
  226. joined together with ``arg_joiner``, and then interpolated into the ``template``
  227. as the ``expressions`` placeholder.
  228. Positional arguments can be expressions or Python values. Strings are
  229. assumed to be column references and will be wrapped in ``F()`` expressions
  230. while other values will be wrapped in ``Value()`` expressions.
  231. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  232. into the ``template`` attribute. To avoid a SQL injection vulnerability,
  233. ``extra`` :ref:`must not contain untrusted user input
  234. <avoiding-sql-injection-in-query-expressions>` as these values are interpolated
  235. into the SQL string rather than passed as query parameters, where the database
  236. driver would escape them.
  237. The ``function``, ``template``, and ``arg_joiner`` keywords can be used to
  238. replace the attributes of the same name without having to define your own
  239. class. ``output_field`` can be used to define the expected return type.
  240. ``Aggregate()`` expressions
  241. ---------------------------
  242. An aggregate expression is a special case of a :ref:`Func() expression
  243. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  244. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  245. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  246. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  247. some complex computations::
  248. from django.db.models import Count
  249. Company.objects.annotate(
  250. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  251. The ``Aggregate`` API is as follows:
  252. .. class:: Aggregate(expression, output_field=None, filter=None, **extra)
  253. .. attribute:: template
  254. A class attribute, as a format string, that describes the SQL that is
  255. generated for this aggregate. Defaults to
  256. ``'%(function)s( %(expressions)s )'``.
  257. .. attribute:: function
  258. A class attribute describing the aggregate function that will be
  259. generated. Specifically, the ``function`` will be interpolated as the
  260. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  261. .. attribute:: window_compatible
  262. .. versionadded:: 2.0
  263. Defaults to ``True`` since most aggregate functions can be used as the
  264. source expression in :class:`~django.db.models.expressions.Window`.
  265. The ``expression`` argument can be the name of a field on the model, or another
  266. expression. It will be converted to a string and used as the ``expressions``
  267. placeholder within the ``template``.
  268. The ``output_field`` argument requires a model field instance, like
  269. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  270. after it's retrieved from the database. Usually no arguments are needed when
  271. instantiating the model field as any arguments relating to data validation
  272. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  273. output value.
  274. Note that ``output_field`` is only required when Django is unable to determine
  275. what field type the result should be. Complex expressions that mix field types
  276. should define the desired ``output_field``. For example, adding an
  277. ``IntegerField()`` and a ``FloatField()`` together should probably have
  278. ``output_field=FloatField()`` defined.
  279. The ``filter`` argument takes a :class:`Q object <django.db.models.Q>` that's
  280. used to filter the rows that are aggregated. See :ref:`conditional-aggregation`
  281. and :ref:`filtering-on-annotations` for example usage.
  282. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  283. into the ``template`` attribute.
  284. .. versionchanged:: 2.0
  285. The ``filter`` argument was added.
  286. Creating your own Aggregate Functions
  287. -------------------------------------
  288. Creating your own aggregate is extremely easy. At a minimum, you need
  289. to define ``function``, but you can also completely customize the
  290. SQL that is generated. Here's a brief example::
  291. from django.db.models import Aggregate
  292. class Count(Aggregate):
  293. # supports COUNT(distinct field)
  294. function = 'COUNT'
  295. template = '%(function)s(%(distinct)s%(expressions)s)'
  296. def __init__(self, expression, distinct=False, **extra):
  297. super().__init__(
  298. expression,
  299. distinct='DISTINCT ' if distinct else '',
  300. output_field=IntegerField(),
  301. **extra
  302. )
  303. ``Value()`` expressions
  304. -----------------------
  305. .. class:: Value(value, output_field=None)
  306. A ``Value()`` object represents the smallest possible component of an
  307. expression: a simple value. When you need to represent the value of an integer,
  308. boolean, or string within an expression, you can wrap that value within a
  309. ``Value()``.
  310. You will rarely need to use ``Value()`` directly. When you write the expression
  311. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  312. allowing simple values to be used in more complex expressions. You will need to
  313. use ``Value()`` when you want to pass a string to an expression. Most
  314. expressions interpret a string argument as the name of a field, like
  315. ``Lower('name')``.
  316. The ``value`` argument describes the value to be included in the expression,
  317. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  318. values into their corresponding database type.
  319. The ``output_field`` argument should be a model field instance, like
  320. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  321. after it's retrieved from the database. Usually no arguments are needed when
  322. instantiating the model field as any arguments relating to data validation
  323. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  324. output value.
  325. ``ExpressionWrapper()`` expressions
  326. -----------------------------------
  327. .. class:: ExpressionWrapper(expression, output_field)
  328. ``ExpressionWrapper`` simply surrounds another expression and provides access
  329. to properties, such as ``output_field``, that may not be available on other
  330. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  331. ``F()`` expressions with different types as described in
  332. :ref:`using-f-with-annotations`.
  333. Conditional expressions
  334. -----------------------
  335. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  336. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  337. expressions. For more details see :doc:`conditional-expressions`.
  338. ``Subquery()`` expressions
  339. --------------------------
  340. .. class:: Subquery(queryset, output_field=None)
  341. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  342. expression.
  343. For example, to annotate each post with the email address of the author of the
  344. newest comment on that post::
  345. >>> from django.db.models import OuterRef, Subquery
  346. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  347. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  348. On PostgreSQL, the SQL looks like:
  349. .. code-block:: sql
  350. SELECT "post"."id", (
  351. SELECT U0."email"
  352. FROM "comment" U0
  353. WHERE U0."post_id" = ("post"."id")
  354. ORDER BY U0."created_at" DESC LIMIT 1
  355. ) AS "newest_commenter_email" FROM "post"
  356. .. note::
  357. The examples in this section are designed to show how to force
  358. Django to execute a subquery. In some cases it may be possible to
  359. write an equivalent queryset that performs the same task more
  360. clearly or efficiently.
  361. Referencing columns from the outer queryset
  362. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  363. .. class:: OuterRef(field)
  364. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  365. from the outer query. It acts like an :class:`F` expression except that the
  366. check to see if it refers to a valid field isn't made until the outer queryset
  367. is resolved.
  368. Instances of ``OuterRef`` may be used in conjunction with nested instances
  369. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  370. parent. For example, this queryset would need to be within a nested pair of
  371. ``Subquery`` instances to resolve correctly::
  372. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  373. Limiting a subquery to a single column
  374. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  375. There are times when a single column must be returned from a ``Subquery``, for
  376. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  377. all comments for posts published within the last day::
  378. >>> from datetime import timedelta
  379. >>> from django.utils import timezone
  380. >>> one_day_ago = timezone.now() - timedelta(days=1)
  381. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  382. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  383. In this case, the subquery must use :meth:`~.QuerySet.values`
  384. to return only a single column: the primary key of the post.
  385. Limiting the subquery to a single row
  386. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  387. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  388. queryset is used::
  389. >>> subquery = Subquery(newest.values('email')[:1])
  390. >>> Post.objects.annotate(newest_commenter_email=subquery)
  391. In this case, the subquery must only return a single column *and* a single
  392. row: the email address of the most recently created comment.
  393. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  394. ``OuterRef`` cannot be resolved until the queryset is used within a
  395. ``Subquery``.)
  396. ``Exists()`` subqueries
  397. ~~~~~~~~~~~~~~~~~~~~~~~
  398. .. class:: Exists(queryset)
  399. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  400. many cases it will perform better than a subquery since the database is able to
  401. stop evaluation of the subquery when a first matching row is found.
  402. For example, to annotate each post with whether or not it has a comment from
  403. within the last day::
  404. >>> from django.db.models import Exists, OuterRef
  405. >>> from datetime import timedelta
  406. >>> from django.utils import timezone
  407. >>> one_day_ago = timezone.now() - timedelta(days=1)
  408. >>> recent_comments = Comment.objects.filter(
  409. ... post=OuterRef('pk'),
  410. ... created_at__gte=one_day_ago,
  411. ... )
  412. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  413. On PostgreSQL, the SQL looks like:
  414. .. code-block:: sql
  415. SELECT "post"."id", "post"."published_at", EXISTS(
  416. SELECT U0."id", U0."post_id", U0."email", U0."created_at"
  417. FROM "comment" U0
  418. WHERE (
  419. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  420. U0."post_id" = ("post"."id")
  421. )
  422. ) AS "recent_comment" FROM "post"
  423. It's unnecessary to force ``Exists`` to refer to a single column, since the
  424. columns are discarded and a boolean result is returned. Similarly, since
  425. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  426. degrade performance, it's automatically removed.
  427. You can query using ``NOT EXISTS`` with ``~Exists()``.
  428. Filtering on a ``Subquery`` expression
  429. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  430. It's not possible to filter directly using ``Subquery`` and ``Exists``, e.g.::
  431. >>> Post.objects.filter(Exists(recent_comments))
  432. ...
  433. TypeError: 'Exists' object is not iterable
  434. You must filter on a subquery expression by first annotating the queryset
  435. and then filtering based on that annotation::
  436. >>> Post.objects.annotate(
  437. ... recent_comment=Exists(recent_comments),
  438. ... ).filter(recent_comment=True)
  439. Using aggregates within a ``Subquery`` expression
  440. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  441. Aggregates may be used within a ``Subquery``, but they require a specific
  442. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  443. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  444. Assuming both models have a ``length`` field, to find posts where the post
  445. length is greater than the total length of all combined comments::
  446. >>> from django.db.models import OuterRef, Subquery, Sum
  447. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  448. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  449. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  450. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  451. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  452. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  453. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  454. which these queryset methods are applied is important. In this case, since the
  455. subquery must be limited to a single column, ``values('total')`` is required.
  456. This is the only way to perform an aggregation within a ``Subquery``, as
  457. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  458. there is an ``OuterRef``, this will not be possible to resolve).
  459. Raw SQL expressions
  460. -------------------
  461. .. currentmodule:: django.db.models.expressions
  462. .. class:: RawSQL(sql, params, output_field=None)
  463. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  464. In these edge cases, use the ``RawSQL`` expression. For example::
  465. >>> from django.db.models.expressions import RawSQL
  466. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
  467. These extra lookups may not be portable to different database engines (because
  468. you're explicitly writing SQL code) and violate the DRY principle, so you
  469. should avoid them if possible.
  470. .. warning::
  471. To protect against `SQL injection attacks
  472. <https://en.wikipedia.org/wiki/SQL_injection>`_, you must escape any
  473. parameters that the user can control by using ``params``. ``params`` is a
  474. required argument to force you to acknowledge that you're not interpolating
  475. your SQL with user-provided data.
  476. You also must not quote placeholders in the SQL string. This example is
  477. vulnerable to SQL injection because of the quotes around ``%s``::
  478. RawSQL("select col from sometable where othercol = '%s'") # unsafe!
  479. You can read more about how Django's :ref:`SQL injection protection
  480. <sql-injection-protection>` works.
  481. Window functions
  482. ----------------
  483. .. versionadded:: 2.0
  484. Window functions provide a way to apply functions on partitions. Unlike a
  485. normal aggregation function which computes a final result for each set defined
  486. by the group by, window functions operate on :ref:`frames <window-frames>` and
  487. partitions, and compute the result for each row.
  488. You can specify multiple windows in the same query which in Django ORM would be
  489. equivalent to including multiple expressions in a :doc:`QuerySet.annotate()
  490. </topics/db/aggregation>` call. The ORM doesn't make use of named windows,
  491. instead they are part of the selected columns.
  492. .. class:: Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)
  493. .. attribute:: filterable
  494. Defaults to ``False``. The SQL standard disallows referencing window
  495. functions in the ``WHERE`` clause and Django raises an exception when
  496. constructing a ``QuerySet`` that would do that.
  497. .. attribute:: template
  498. Defaults to ``%(expression)s OVER (%(window)s)'``. If only the
  499. ``expression`` argument is provided, the window clause will be blank.
  500. The ``Window`` class is the main expression for an ``OVER`` clause.
  501. The ``expression`` argument is either a :ref:`window function
  502. <window-functions>`, an :ref:`aggregate function <aggregation-functions>`, or
  503. an expression that's compatible in a window clause.
  504. The ``partition_by`` argument is a list of expressions (column names should be
  505. wrapped in an ``F``-object) that control the partitioning of the rows.
  506. Partitioning narrows which rows are used to compute the result set.
  507. The ``output_field`` is specified either as an argument or by the expression.
  508. The ``order_by`` argument accepts a sequence of expressions on which you can
  509. call :meth:`~django.db.models.Expression.asc` and
  510. :meth:`~django.db.models.Expression.desc`. The ordering controls the order in
  511. which the expression is applied. For example, if you sum over the rows in a
  512. partition, the first result is just the value of the first row, the second is
  513. the sum of first and second row.
  514. The ``frame`` parameter specifies which other rows that should be used in the
  515. computation. See :ref:`window-frames` for details.
  516. For example, to annotate each movie with the average rating for the movies by
  517. the same studio in the same genre and release year::
  518. >>> from django.db.models import Avg, ExtractYear, F, Window
  519. >>> Movie.objects.annotate(
  520. >>> avg_rating=Window(
  521. >>> expression=Avg('rating'),
  522. >>> partition_by=[F('studio'), F('genre')],
  523. >>> order_by=ExtractYear('released').asc(),
  524. >>> ),
  525. >>> )
  526. This makes it easy to check if a movie is rated better or worse than its peers.
  527. You may want to apply multiple expressions over the same window, i.e., the
  528. same partition and frame. For example, you could modify the previous example
  529. to also include the best and worst rating in each movie's group (same studio,
  530. genre, and release year) by using three window functions in the same query. The
  531. partition and ordering from the previous example is extracted into a dictionary
  532. to reduce repetition::
  533. >>> from django.db.models import Avg, ExtractYear, F, Max, Min, Window
  534. >>> window = {
  535. >>> 'partition': [F('studio'), F('genre')],
  536. >>> 'order_by': ExtractYear('released').asc(),
  537. >>> }
  538. >>> Movie.objects.annotate(
  539. >>> avg_rating=Window(
  540. >>> expression=Avg('rating'), **window,
  541. >>> ),
  542. >>> best=Window(
  543. >>> expression=Max('rating'), **window,
  544. >>> ),
  545. >>> worst=Window(
  546. >>> expression=Min('rating'), **window,
  547. >>> ),
  548. >>> )
  549. Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
  550. support window expressions. Support for different window expression features
  551. varies among the different databases. For example, the options in
  552. :meth:`~django.db.models.Expression.asc` and
  553. :meth:`~django.db.models.Expression.desc` may not be supported. Consult the
  554. documentation for your database as needed.
  555. .. _window-frames:
  556. Frames
  557. ~~~~~~
  558. For a window frame, you can choose either a range-based sequence of rows or an
  559. ordinary sequence of rows.
  560. .. class:: ValueRange(start=None, end=None)
  561. .. attribute:: frame_type
  562. This attribute is set to ``'RANGE'``.
  563. PostgreSQL has limited support for ``ValueRange`` and only supports use of
  564. the standard start and end points, such as ``CURRENT ROW`` and ``UNBOUNDED
  565. FOLLOWING``.
  566. .. class:: RowRange(start=None, end=None)
  567. .. attribute:: frame_type
  568. This attribute is set to ``'ROWS'``.
  569. Both classes return SQL with the template::
  570. %(frame_type)s BETWEEN %(start)s AND %(end)s
  571. Frames narrow the rows that are used for computing the result. They shift from
  572. some start point to some specified end point. Frames can be used with and
  573. without partitions, but it's often a good idea to specify an ordering of the
  574. window to ensure a deterministic result. In a frame, a peer in a frame is a row
  575. with an equivalent value, or all rows if an ordering clause isn't present.
  576. The default starting point for a frame is ``UNBOUNDED PRECEDING`` which is the
  577. first row of the partition. The end point is always explicitly included in the
  578. SQL generated by the ORM and is by default ``UNBOUNDED FOLLOWING``. The default
  579. frame includes all rows from the partition to the last row in the set.
  580. The accepted values for the ``start`` and ``end`` arguments are ``None``, an
  581. integer, or zero. A negative integer for ``start`` results in ``N preceding``,
  582. while ``None`` yields ``UNBOUNDED PRECEDING``. For both ``start`` and ``end``,
  583. zero will return ``CURRENT ROW``. Positive integers are accepted for ``end``.
  584. There's a difference in what ``CURRENT ROW`` includes. When specified in
  585. ``ROWS`` mode, the frame starts or ends with the current row. When specified in
  586. ``RANGE`` mode, the frame starts or ends at the first or last peer according to
  587. the ordering clause. Thus, ``RANGE CURRENT ROW`` evaluates the expression for
  588. rows which have the same value specified by the ordering. Because the template
  589. includes both the ``start`` and ``end`` points, this may be expressed with::
  590. ValueRange(start=0, end=0)
  591. If a movie's "peers" are described as movies released by the same studio in the
  592. same genre in the same year, this ``RowRange`` example annotates each movie
  593. with the average rating of a movie's two prior and two following peers::
  594. >>> from django.db.models import Avg, ExtractYear, F, RowRange, Window
  595. >>> Movie.objects.annotate(
  596. >>> avg_rating=Window(
  597. >>> expression=Avg('rating'),
  598. >>> partition_by=[F('studio'), F('genre')],
  599. >>> order_by=ExtractYear('released').asc(),
  600. >>> frame=RowRange(start=-2, end=2),
  601. >>> ),
  602. >>> )
  603. If the database supports it, you can specify the start and end points based on
  604. values of an expression in the partition. If the ``released`` field of the
  605. ``Movie`` model stores the release month of each movies, this ``ValueRange``
  606. example annotates each movie with the average rating of a movie's peers
  607. released between twelve months before and twelve months after the each movie.
  608. >>> from django.db.models import Avg, ExpressionList, F, ValueRange, Window
  609. >>> Movie.objects.annotate(
  610. >>> avg_rating=Window(
  611. >>> expression=Avg('rating'),
  612. >>> partition_by=[F('studio'), F('genre')],
  613. >>> order_by=F('released').asc(),
  614. >>> frame=ValueRange(start=-12, end=12),
  615. >>> ),
  616. >>> )
  617. .. currentmodule:: django.db.models
  618. Technical Information
  619. =====================
  620. Below you'll find technical implementation details that may be useful to
  621. library authors. The technical API and examples below will help with
  622. creating generic query expressions that can extend the built-in functionality
  623. that Django provides.
  624. Expression API
  625. --------------
  626. Query expressions implement the :ref:`query expression API <query-expression>`,
  627. but also expose a number of extra methods and attributes listed below. All
  628. query expressions must inherit from ``Expression()`` or a relevant
  629. subclass.
  630. When a query expression wraps another expression, it is responsible for
  631. calling the appropriate methods on the wrapped expression.
  632. .. class:: Expression
  633. .. attribute:: contains_aggregate
  634. Tells Django that this expression contains an aggregate and that a
  635. ``GROUP BY`` clause needs to be added to the query.
  636. .. attribute:: contains_over_clause
  637. .. versionadded:: 2.0
  638. Tells Django that this expression contains a
  639. :class:`~django.db.models.expressions.Window` expression. It's used,
  640. for example, to disallow window function expressions in queries that
  641. modify data. Defaults to ``True``.
  642. .. attribute:: filterable
  643. .. versionadded:: 2.0
  644. Tells Django that this expression can be referenced in
  645. :meth:`.QuerySet.filter`. Defaults to ``True``.
  646. .. attribute:: window_compatible
  647. .. versionadded:: 2.0
  648. Tells Django that this expression can be used as the source expression
  649. in :class:`~django.db.models.expressions.Window`. Defaults to
  650. ``False``.
  651. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  652. Provides the chance to do any pre-processing or validation of
  653. the expression before it's added to the query. ``resolve_expression()``
  654. must also be called on any nested expressions. A ``copy()`` of ``self``
  655. should be returned with any necessary transformations.
  656. ``query`` is the backend query implementation.
  657. ``allow_joins`` is a boolean that allows or denies the use of
  658. joins in the query.
  659. ``reuse`` is a set of reusable joins for multi-join scenarios.
  660. ``summarize`` is a boolean that, when ``True``, signals that the
  661. query being computed is a terminal aggregate query.
  662. .. method:: get_source_expressions()
  663. Returns an ordered list of inner expressions. For example::
  664. >>> Sum(F('foo')).get_source_expressions()
  665. [F('foo')]
  666. .. method:: set_source_expressions(expressions)
  667. Takes a list of expressions and stores them such that
  668. ``get_source_expressions()`` can return them.
  669. .. method:: relabeled_clone(change_map)
  670. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  671. Column aliases are renamed when subqueries are created.
  672. ``relabeled_clone()`` should also be called on any nested expressions
  673. and assigned to the clone.
  674. ``change_map`` is a dictionary mapping old aliases to new aliases.
  675. Example::
  676. def relabeled_clone(self, change_map):
  677. clone = copy.copy(self)
  678. clone.expression = self.expression.relabeled_clone(change_map)
  679. return clone
  680. .. method:: convert_value(value, expression, connection)
  681. A hook allowing the expression to coerce ``value`` into a more
  682. appropriate type.
  683. .. method:: get_group_by_cols()
  684. Responsible for returning the list of columns references by
  685. this expression. ``get_group_by_cols()`` should be called on any
  686. nested expressions. ``F()`` objects, in particular, hold a reference
  687. to a column.
  688. .. method:: asc(nulls_first=False, nulls_last=False)
  689. Returns the expression ready to be sorted in ascending order.
  690. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  691. .. method:: desc(nulls_first=False, nulls_last=False)
  692. Returns the expression ready to be sorted in descending order.
  693. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  694. .. method:: reverse_ordering()
  695. Returns ``self`` with any modifications required to reverse the sort
  696. order within an ``order_by`` call. As an example, an expression
  697. implementing ``NULLS LAST`` would change its value to be
  698. ``NULLS FIRST``. Modifications are only required for expressions that
  699. implement sort order like ``OrderBy``. This method is called when
  700. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  701. queryset.
  702. Writing your own Query Expressions
  703. ----------------------------------
  704. You can write your own query expression classes that use, and can integrate
  705. with, other query expressions. Let's step through an example by writing an
  706. implementation of the ``COALESCE`` SQL function, without using the built-in
  707. :ref:`Func() expressions <func-expressions>`.
  708. The ``COALESCE`` SQL function is defined as taking a list of columns or
  709. values. It will return the first column or value that isn't ``NULL``.
  710. We'll start by defining the template to be used for SQL generation and
  711. an ``__init__()`` method to set some attributes::
  712. import copy
  713. from django.db.models import Expression
  714. class Coalesce(Expression):
  715. template = 'COALESCE( %(expressions)s )'
  716. def __init__(self, expressions, output_field):
  717. super().__init__(output_field=output_field)
  718. if len(expressions) < 2:
  719. raise ValueError('expressions must have at least 2 elements')
  720. for expression in expressions:
  721. if not hasattr(expression, 'resolve_expression'):
  722. raise TypeError('%r is not an Expression' % expression)
  723. self.expressions = expressions
  724. We do some basic validation on the parameters, including requiring at least
  725. 2 columns or values, and ensuring they are expressions. We are requiring
  726. ``output_field`` here so that Django knows what kind of model field to assign
  727. the eventual result to.
  728. Now we implement the pre-processing and validation. Since we do not have
  729. any of our own validation at this point, we just delegate to the nested
  730. expressions::
  731. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  732. c = self.copy()
  733. c.is_summary = summarize
  734. for pos, expression in enumerate(self.expressions):
  735. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  736. return c
  737. Next, we write the method responsible for generating the SQL::
  738. def as_sql(self, compiler, connection, template=None):
  739. sql_expressions, sql_params = [], []
  740. for expression in self.expressions:
  741. sql, params = compiler.compile(expression)
  742. sql_expressions.append(sql)
  743. sql_params.extend(params)
  744. template = template or self.template
  745. data = {'expressions': ','.join(sql_expressions)}
  746. return template % data, params
  747. def as_oracle(self, compiler, connection):
  748. """
  749. Example of vendor specific handling (Oracle in this case).
  750. Let's make the function name lowercase.
  751. """
  752. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  753. ``as_sql()`` methods can support custom keyword arguments, allowing
  754. ``as_vendorname()`` methods to override data used to generate the SQL string.
  755. Using ``as_sql()`` keyword arguments for customization is preferable to
  756. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  757. errors when running on different database backends. If your class relies on
  758. class attributes to define data, consider allowing overrides in your
  759. ``as_sql()`` method.
  760. We generate the SQL for each of the ``expressions`` by using the
  761. ``compiler.compile()`` method, and join the result together with commas.
  762. Then the template is filled out with our data and the SQL and parameters
  763. are returned.
  764. We've also defined a custom implementation that is specific to the Oracle
  765. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  766. if the Oracle backend is in use.
  767. Finally, we implement the rest of the methods that allow our query expression
  768. to play nice with other query expressions::
  769. def get_source_expressions(self):
  770. return self.expressions
  771. def set_source_expressions(self, expressions):
  772. self.expressions = expressions
  773. Let's see how it works::
  774. >>> from django.db.models import F, Value, CharField
  775. >>> qs = Company.objects.annotate(
  776. ... tagline=Coalesce([
  777. ... F('motto'),
  778. ... F('ticker_name'),
  779. ... F('description'),
  780. ... Value('No Tagline')
  781. ... ], output_field=CharField()))
  782. >>> for c in qs:
  783. ... print("%s: %s" % (c.name, c.tagline))
  784. ...
  785. Google: Do No Evil
  786. Apple: AAPL
  787. Yahoo: Internet Company
  788. Django Software Foundation: No Tagline
  789. .. _avoiding-sql-injection-in-query-expressions:
  790. Avoiding SQL injection
  791. ~~~~~~~~~~~~~~~~~~~~~~
  792. Since a ``Func``'s keyword arguments for ``__init__()`` (``**extra``) and
  793. ``as_sql()`` (``**extra_context``) are interpolated into the SQL string rather
  794. than passed as query parameters (where the database driver would escape them),
  795. they must not contain untrusted user input.
  796. For example, if ``substring`` is user-provided, this function is vulnerable to
  797. SQL injection::
  798. from django.db.models import Func
  799. class Position(Func):
  800. function = 'POSITION'
  801. template = "%(function)s('%(substring)s' in %(expressions)s)"
  802. def __init__(self, expression, substring):
  803. # substring=substring is a SQL injection vulnerability!
  804. super().__init__(expression, substring=substring)
  805. This function generates a SQL string without any parameters. Since ``substring``
  806. is passed to ``super().__init__()`` as a keyword argument, it's interpolated
  807. into the SQL string before the query is sent to the database.
  808. Here's a corrected rewrite::
  809. class Position(Func):
  810. function = 'POSITION'
  811. arg_joiner = ' IN '
  812. def __init__(self, expression, substring):
  813. super().__init__(substring, expression)
  814. With ``substring`` instead passed as a positional argument, it'll be passed as
  815. a parameter in the database query.
  816. Adding support in third-party database backends
  817. -----------------------------------------------
  818. If you're using a database backend that uses a different SQL syntax for a
  819. certain function, you can add support for it by monkey patching a new method
  820. onto the function's class.
  821. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  822. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  823. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  824. class::
  825. from django.db.models.functions import Length
  826. def sqlserver_length(self, compiler, connection):
  827. return self.as_sql(compiler, connection, function='LEN')
  828. Length.as_sqlserver = sqlserver_length
  829. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  830. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  831. ``sqlserver`` for the backend.
  832. Third-party backends can register their functions in the top level
  833. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  834. file (or package) that is imported from the top level ``__init__.py``.
  835. For user projects wishing to patch the backend that they're using, this code
  836. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.