aggregates.txt 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. =========================================
  2. PostgreSQL specific aggregation functions
  3. =========================================
  4. .. module:: django.contrib.postgres.aggregates
  5. :synopsis: PostgreSQL specific aggregation functions
  6. These functions are available from the ``django.contrib.postgres.aggregates``
  7. module. They are described in more detail in the `PostgreSQL docs
  8. <https://www.postgresql.org/docs/current/functions-aggregate.html>`_.
  9. .. note::
  10. All functions come without default aliases, so you must explicitly provide
  11. one. For example::
  12. >>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
  13. {'arr': [0, 1, 2]}
  14. .. admonition:: Common aggregate options
  15. All aggregates have the :ref:`filter <aggregate-filter>` keyword
  16. argument.
  17. General-purpose aggregation functions
  18. =====================================
  19. ``ArrayAgg``
  20. ------------
  21. .. class:: ArrayAgg(expression, distinct=False, filter=None, ordering=(), **extra)
  22. Returns a list of values, including nulls, concatenated into an array.
  23. .. attribute:: distinct
  24. An optional boolean argument that determines if array values
  25. will be distinct. Defaults to ``False``.
  26. .. attribute:: ordering
  27. An optional string of a field name (with an optional ``"-"`` prefix
  28. which indicates descending order) or an expression (or a tuple or list
  29. of strings and/or expressions) that specifies the ordering of the
  30. elements in the result list.
  31. Examples::
  32. 'some_field'
  33. '-some_field'
  34. from django.db.models import F
  35. F('some_field').desc()
  36. ``BitAnd``
  37. ----------
  38. .. class:: BitAnd(expression, filter=None, **extra)
  39. Returns an ``int`` of the bitwise ``AND`` of all non-null input values, or
  40. ``None`` if all values are null.
  41. ``BitOr``
  42. ---------
  43. .. class:: BitOr(expression, filter=None, **extra)
  44. Returns an ``int`` of the bitwise ``OR`` of all non-null input values, or
  45. ``None`` if all values are null.
  46. ``BoolAnd``
  47. -----------
  48. .. class:: BoolAnd(expression, filter=None, **extra)
  49. Returns ``True``, if all input values are true, ``None`` if all values are
  50. null or if there are no values, otherwise ``False`` .
  51. ``BoolOr``
  52. ----------
  53. .. class:: BoolOr(expression, filter=None, **extra)
  54. Returns ``True`` if at least one input value is true, ``None`` if all
  55. values are null or if there are no values, otherwise ``False``.
  56. ``JSONBAgg``
  57. ------------
  58. .. class:: JSONBAgg(expressions, filter=None, **extra)
  59. Returns the input values as a ``JSON`` array.
  60. ``StringAgg``
  61. -------------
  62. .. class:: StringAgg(expression, delimiter, distinct=False, filter=None, ordering=())
  63. Returns the input values concatenated into a string, separated by
  64. the ``delimiter`` string.
  65. .. attribute:: delimiter
  66. Required argument. Needs to be a string.
  67. .. attribute:: distinct
  68. An optional boolean argument that determines if concatenated values
  69. will be distinct. Defaults to ``False``.
  70. .. attribute:: ordering
  71. An optional string of a field name (with an optional ``"-"`` prefix
  72. which indicates descending order) or an expression (or a tuple or list
  73. of strings and/or expressions) that specifies the ordering of the
  74. elements in the result string.
  75. Examples are the same as for :attr:`ArrayAgg.ordering`.
  76. Aggregate functions for statistics
  77. ==================================
  78. ``y`` and ``x``
  79. ---------------
  80. The arguments ``y`` and ``x`` for all these functions can be the name of a
  81. field or an expression returning a numeric data. Both are required.
  82. ``Corr``
  83. --------
  84. .. class:: Corr(y, x, filter=None)
  85. Returns the correlation coefficient as a ``float``, or ``None`` if there
  86. aren't any matching rows.
  87. ``CovarPop``
  88. ------------
  89. .. class:: CovarPop(y, x, sample=False, filter=None)
  90. Returns the population covariance as a ``float``, or ``None`` if there
  91. aren't any matching rows.
  92. Has one optional argument:
  93. .. attribute:: sample
  94. By default ``CovarPop`` returns the general population covariance.
  95. However, if ``sample=True``, the return value will be the sample
  96. population covariance.
  97. ``RegrAvgX``
  98. ------------
  99. .. class:: RegrAvgX(y, x, filter=None)
  100. Returns the average of the independent variable (``sum(x)/N``) as a
  101. ``float``, or ``None`` if there aren't any matching rows.
  102. ``RegrAvgY``
  103. ------------
  104. .. class:: RegrAvgY(y, x, filter=None)
  105. Returns the average of the dependent variable (``sum(y)/N``) as a
  106. ``float``, or ``None`` if there aren't any matching rows.
  107. ``RegrCount``
  108. -------------
  109. .. class:: RegrCount(y, x, filter=None)
  110. Returns an ``int`` of the number of input rows in which both expressions
  111. are not null.
  112. ``RegrIntercept``
  113. -----------------
  114. .. class:: RegrIntercept(y, x, filter=None)
  115. Returns the y-intercept of the least-squares-fit linear equation determined
  116. by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
  117. matching rows.
  118. ``RegrR2``
  119. ----------
  120. .. class:: RegrR2(y, x, filter=None)
  121. Returns the square of the correlation coefficient as a ``float``, or
  122. ``None`` if there aren't any matching rows.
  123. ``RegrSlope``
  124. -------------
  125. .. class:: RegrSlope(y, x, filter=None)
  126. Returns the slope of the least-squares-fit linear equation determined
  127. by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
  128. matching rows.
  129. ``RegrSXX``
  130. -----------
  131. .. class:: RegrSXX(y, x, filter=None)
  132. Returns ``sum(x^2) - sum(x)^2/N`` ("sum of squares" of the independent
  133. variable) as a ``float``, or ``None`` if there aren't any matching rows.
  134. ``RegrSXY``
  135. -----------
  136. .. class:: RegrSXY(y, x, filter=None)
  137. Returns ``sum(x*y) - sum(x) * sum(y)/N`` ("sum of products" of independent
  138. times dependent variable) as a ``float``, or ``None`` if there aren't any
  139. matching rows.
  140. ``RegrSYY``
  141. -----------
  142. .. class:: RegrSYY(y, x, filter=None)
  143. Returns ``sum(y^2) - sum(y)^2/N`` ("sum of squares" of the dependent
  144. variable) as a ``float``, or ``None`` if there aren't any matching rows.
  145. Usage examples
  146. ==============
  147. We will use this example table::
  148. | FIELD1 | FIELD2 | FIELD3 |
  149. |--------|--------|--------|
  150. | foo | 1 | 13 |
  151. | bar | 2 | (null) |
  152. | test | 3 | 13 |
  153. Here's some examples of some of the general-purpose aggregation functions::
  154. >>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
  155. {'result': 'foo;bar;test'}
  156. >>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
  157. {'result': [1, 2, 3]}
  158. >>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
  159. {'result': ['foo', 'bar', 'test']}
  160. The next example shows the usage of statistical aggregate functions. The
  161. underlying math will be not described (you can read about this, for example, at
  162. `wikipedia <https://en.wikipedia.org/wiki/Regression_analysis>`_)::
  163. >>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
  164. {'count': 2}
  165. >>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
  166. ... avgy=RegrAvgY(y='field3', x='field2'))
  167. {'avgx': 2, 'avgy': 13}