expressions.txt 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. There are a
  7. number of built-in expressions (documented below) that can be used to help you
  8. write queries. Expressions can be combined, or in some cases nested, to form
  9. more complex computations.
  10. Supported arithmetic
  11. ====================
  12. Django supports addition, subtraction, multiplication, division, modulo
  13. arithmetic, and the power operator on query expressions, using Python constants,
  14. variables, and even other expressions.
  15. Some examples
  16. =============
  17. .. code-block:: python
  18. from django.db.models import F, Count
  19. from django.db.models.functions import Length, Upper, Value
  20. # Find companies that have more employees than chairs.
  21. Company.objects.filter(num_employees__gt=F('num_chairs'))
  22. # Find companies that have at least twice as many employees
  23. # as chairs. Both the querysets below are equivalent.
  24. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  25. Company.objects.filter(
  26. num_employees__gt=F('num_chairs') + F('num_chairs'))
  27. # How many chairs are needed for each company to seat all employees?
  28. >>> company = Company.objects.filter(
  29. ... num_employees__gt=F('num_chairs')).annotate(
  30. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  31. >>> company.num_employees
  32. 120
  33. >>> company.num_chairs
  34. 50
  35. >>> company.chairs_needed
  36. 70
  37. # Create a new company using expressions.
  38. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  39. # Be sure to refresh it if you need to access the field.
  40. >>> company.refresh_from_db()
  41. >>> company.ticker
  42. 'GOOG'
  43. # Annotate models with an aggregated value. Both forms
  44. # below are equivalent.
  45. Company.objects.annotate(num_products=Count('products'))
  46. Company.objects.annotate(num_products=Count(F('products')))
  47. # Aggregates can contain complex computations also
  48. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  49. # Expressions can also be used in order_by()
  50. Company.objects.order_by(Length('name').asc())
  51. Company.objects.order_by(Length('name').desc())
  52. Built-in Expressions
  53. ====================
  54. .. note::
  55. These expressions are defined in ``django.db.models.expressions`` and
  56. ``django.db.models.aggregates``, but for convenience they're available and
  57. usually imported from :mod:`django.db.models`.
  58. ``F()`` expressions
  59. -------------------
  60. .. class:: F
  61. An ``F()`` object represents the value of a model field or annotated column. It
  62. makes it possible to refer to model field values and perform database
  63. operations using them without actually having to pull them out of the database
  64. into Python memory.
  65. Instead, Django uses the ``F()`` object to generate an SQL expression that
  66. describes the required operation at the database level.
  67. This is easiest to understand through an example. Normally, one might do
  68. something like this::
  69. # Tintin filed a news story!
  70. reporter = Reporters.objects.get(name='Tintin')
  71. reporter.stories_filed += 1
  72. reporter.save()
  73. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  74. into memory and manipulated it using familiar Python operators, and then saved
  75. the object back to the database. But instead we could also have done::
  76. from django.db.models import F
  77. reporter = Reporters.objects.get(name='Tintin')
  78. reporter.stories_filed = F('stories_filed') + 1
  79. reporter.save()
  80. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  81. normal Python assignment of value to an instance attribute, in fact it's an SQL
  82. construct describing an operation on the database.
  83. When Django encounters an instance of ``F()``, it overrides the standard Python
  84. operators to create an encapsulated SQL expression; in this case, one which
  85. instructs the database to increment the database field represented by
  86. ``reporter.stories_filed``.
  87. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  88. know about it - it is dealt with entirely by the database. All Python does,
  89. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  90. and describe the operation.
  91. .. note::
  92. In order to access the new value that has been saved in this way, the object
  93. will need to be reloaded::
  94. reporter = Reporters.objects.get(pk=reporter.pk)
  95. # Or, more succinctly:
  96. reporter.refresh_from_db()
  97. As well as being used in operations on single instances as above, ``F()`` can
  98. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  99. the two queries we were using above - the ``get()`` and the
  100. :meth:`~Model.save()` - to just one::
  101. reporter = Reporters.objects.filter(name='Tintin')
  102. reporter.update(stories_filed=F('stories_filed') + 1)
  103. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  104. the field value on multiple objects - which could be very much faster than
  105. pulling them all into Python from the database, looping over them, incrementing
  106. the field value of each one, and saving each one back to the database::
  107. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  108. ``F()`` therefore can offer performance advantages by:
  109. * getting the database, rather than Python, to do work
  110. * reducing the number of queries some operations require
  111. .. _avoiding-race-conditions-using-f:
  112. Avoiding race conditions using ``F()``
  113. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  114. Another useful benefit of ``F()`` is that having the database - rather than
  115. Python - update a field's value avoids a *race condition*.
  116. If two Python threads execute the code in the first example above, one thread
  117. could retrieve, increment, and save a field's value after the other has
  118. retrieved it from the database. The value that the second thread saves will be
  119. based on the original value; the work of the first thread will simply be lost.
  120. If the database is responsible for updating the field, the process is more
  121. robust: it will only ever update the field based on the value of the field in
  122. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  123. than based on its value when the instance was retrieved.
  124. Using ``F()`` in filters
  125. ~~~~~~~~~~~~~~~~~~~~~~~~
  126. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  127. possible to filter a set of objects against criteria based on their field
  128. values, rather than on Python values.
  129. This is documented in :ref:`using F() expressions in queries
  130. <using-f-expressions-in-filters>`.
  131. .. _using-f-with-annotations:
  132. Using ``F()`` with annotations
  133. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  134. ``F()`` can be used to create dynamic fields on your models by combining
  135. different fields with arithmetic::
  136. company = Company.objects.annotate(
  137. chairs_needed=F('num_employees') - F('num_chairs'))
  138. If the fields that you're combining are of different types you'll need
  139. to tell Django what kind of field will be returned. Since ``F()`` does not
  140. directly support ``output_field`` you will need to wrap the expression with
  141. :class:`ExpressionWrapper`::
  142. from django.db.models import DateTimeField, ExpressionWrapper, F
  143. Ticket.objects.annotate(
  144. expires=ExpressionWrapper(
  145. F('active_at') + F('duration'), output_field=DateTimeField()))
  146. .. _func-expressions:
  147. ``Func()`` expressions
  148. ----------------------
  149. ``Func()`` expressions are the base type of all expressions that involve
  150. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  151. They can be used directly::
  152. from django.db.models import Func, F
  153. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  154. or they can be used to build a library of database functions::
  155. class Lower(Func):
  156. function = 'LOWER'
  157. queryset.annotate(field_lower=Lower('field'))
  158. But both cases will result in a queryset where each model is annotated with an
  159. extra attribute ``field_lower`` produced, roughly, from the following SQL::
  160. SELECT
  161. ...
  162. LOWER("db_table"."field") as "field_lower"
  163. See :doc:`database-functions` for a list of built-in database functions.
  164. The ``Func`` API is as follows:
  165. .. class:: Func(*expressions, **extra)
  166. .. attribute:: function
  167. A class attribute describing the function that will be generated.
  168. Specifically, the ``function`` will be interpolated as the ``function``
  169. placeholder within :attr:`template`. Defaults to ``None``.
  170. .. attribute:: template
  171. A class attribute, as a format string, that describes the SQL that is
  172. generated for this function. Defaults to
  173. ``'%(function)s(%(expressions)s)'``.
  174. .. attribute:: arg_joiner
  175. A class attribute that denotes the character used to join the list of
  176. ``expressions`` together. Defaults to ``', '``.
  177. .. attribute:: arity
  178. .. versionadded:: 1.10
  179. A class attribute that denotes the number of arguments the function
  180. accepts. If this attribute is set and the function is called with a
  181. different number of expressions, ``TypeError`` will be raised. Defaults
  182. to ``None``.
  183. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  184. Generates the SQL for the database function.
  185. The ``as_vendor()`` methods should use the ``function``, ``template``,
  186. ``arg_joiner``, and any other ``**extra_context`` parameters to
  187. customize the SQL as needed. For example:
  188. .. snippet::
  189. :filename: django/db/models/functions.py
  190. class ConcatPair(Func):
  191. ...
  192. function = 'CONCAT'
  193. ...
  194. def as_mysql(self, compiler, connection):
  195. return super(ConcatPair, self).as_sql(
  196. compiler, connection,
  197. function='CONCAT_WS',
  198. template="%(function)s('', %(expressions)s)",
  199. )
  200. .. versionchanged:: 1.10
  201. Support for the ``arg_joiner`` and ``**extra_context`` parameters
  202. was added.
  203. The ``*expressions`` argument is a list of positional expressions that the
  204. function will be applied to. The expressions will be converted to strings,
  205. joined together with ``arg_joiner``, and then interpolated into the ``template``
  206. as the ``expressions`` placeholder.
  207. Positional arguments can be expressions or Python values. Strings are
  208. assumed to be column references and will be wrapped in ``F()`` expressions
  209. while other values will be wrapped in ``Value()`` expressions.
  210. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  211. into the ``template`` attribute. The ``function``, ``template``, and
  212. ``arg_joiner`` keywords can be used to replace the attributes of the same name
  213. without having to define your own class. ``output_field`` can be used to define
  214. the expected return type.
  215. ``Aggregate()`` expressions
  216. ---------------------------
  217. An aggregate expression is a special case of a :ref:`Func() expression
  218. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  219. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  220. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  221. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  222. some complex computations::
  223. from django.db.models import Count
  224. Company.objects.annotate(
  225. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  226. The ``Aggregate`` API is as follows:
  227. .. class:: Aggregate(expression, output_field=None, **extra)
  228. .. attribute:: template
  229. A class attribute, as a format string, that describes the SQL that is
  230. generated for this aggregate. Defaults to
  231. ``'%(function)s( %(expressions)s )'``.
  232. .. attribute:: function
  233. A class attribute describing the aggregate function that will be
  234. generated. Specifically, the ``function`` will be interpolated as the
  235. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  236. The ``expression`` argument can be the name of a field on the model, or another
  237. expression. It will be converted to a string and used as the ``expressions``
  238. placeholder within the ``template``.
  239. The ``output_field`` argument requires a model field instance, like
  240. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  241. after it's retrieved from the database. Usually no arguments are needed when
  242. instantiating the model field as any arguments relating to data validation
  243. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  244. output value.
  245. Note that ``output_field`` is only required when Django is unable to determine
  246. what field type the result should be. Complex expressions that mix field types
  247. should define the desired ``output_field``. For example, adding an
  248. ``IntegerField()`` and a ``FloatField()`` together should probably have
  249. ``output_field=FloatField()`` defined.
  250. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  251. into the ``template`` attribute.
  252. Creating your own Aggregate Functions
  253. -------------------------------------
  254. Creating your own aggregate is extremely easy. At a minimum, you need
  255. to define ``function``, but you can also completely customize the
  256. SQL that is generated. Here's a brief example::
  257. from django.db.models import Aggregate
  258. class Count(Aggregate):
  259. # supports COUNT(distinct field)
  260. function = 'COUNT'
  261. template = '%(function)s(%(distinct)s%(expressions)s)'
  262. def __init__(self, expression, distinct=False, **extra):
  263. super(Count, self).__init__(
  264. expression,
  265. distinct='DISTINCT ' if distinct else '',
  266. output_field=IntegerField(),
  267. **extra)
  268. ``Value()`` expressions
  269. -----------------------
  270. .. class:: Value(value, output_field=None)
  271. A ``Value()`` object represents the smallest possible component of an
  272. expression: a simple value. When you need to represent the value of an integer,
  273. boolean, or string within an expression, you can wrap that value within a
  274. ``Value()``.
  275. You will rarely need to use ``Value()`` directly. When you write the expression
  276. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  277. allowing simple values to be used in more complex expressions. You will need to
  278. use ``Value()`` when you want to pass a string to an expression. Most
  279. expressions interpret a string argument as the name of a field, like
  280. ``Lower('name')``.
  281. The ``value`` argument describes the value to be included in the expression,
  282. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  283. values into their corresponding database type.
  284. The ``output_field`` argument should be a model field instance, like
  285. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  286. after it's retrieved from the database. Usually no arguments are needed when
  287. instantiating the model field as any arguments relating to data validation
  288. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  289. output value.
  290. ``ExpressionWrapper()`` expressions
  291. -----------------------------------
  292. .. class:: ExpressionWrapper(expression, output_field)
  293. ``ExpressionWrapper`` simply surrounds another expression and provides access
  294. to properties, such as ``output_field``, that may not be available on other
  295. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  296. ``F()`` expressions with different types as described in
  297. :ref:`using-f-with-annotations`.
  298. Conditional expressions
  299. -----------------------
  300. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  301. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  302. expressions. For more details see :doc:`conditional-expressions`.
  303. Raw SQL expressions
  304. -------------------
  305. .. currentmodule:: django.db.models.expressions
  306. .. class:: RawSQL(sql, params, output_field=None)
  307. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  308. In these edge cases, use the ``RawSQL`` expression. For example::
  309. >>> from django.db.models.expressions import RawSQL
  310. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
  311. These extra lookups may not be portable to different database engines (because
  312. you're explicitly writing SQL code) and violate the DRY principle, so you
  313. should avoid them if possible.
  314. .. warning::
  315. You should be very careful to escape any parameters that the user can
  316. control by using ``params`` in order to protect against :ref:`SQL injection
  317. attacks <sql-injection-protection>`.
  318. .. currentmodule:: django.db.models
  319. Technical Information
  320. =====================
  321. Below you'll find technical implementation details that may be useful to
  322. library authors. The technical API and examples below will help with
  323. creating generic query expressions that can extend the built-in functionality
  324. that Django provides.
  325. Expression API
  326. --------------
  327. Query expressions implement the :ref:`query expression API <query-expression>`,
  328. but also expose a number of extra methods and attributes listed below. All
  329. query expressions must inherit from ``Expression()`` or a relevant
  330. subclass.
  331. When a query expression wraps another expression, it is responsible for
  332. calling the appropriate methods on the wrapped expression.
  333. .. class:: Expression
  334. .. attribute:: contains_aggregate
  335. Tells Django that this expression contains an aggregate and that a
  336. ``GROUP BY`` clause needs to be added to the query.
  337. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  338. Provides the chance to do any pre-processing or validation of
  339. the expression before it's added to the query. ``resolve_expression()``
  340. must also be called on any nested expressions. A ``copy()`` of ``self``
  341. should be returned with any necessary transformations.
  342. ``query`` is the backend query implementation.
  343. ``allow_joins`` is a boolean that allows or denies the use of
  344. joins in the query.
  345. ``reuse`` is a set of reusable joins for multi-join scenarios.
  346. ``summarize`` is a boolean that, when ``True``, signals that the
  347. query being computed is a terminal aggregate query.
  348. .. method:: get_source_expressions()
  349. Returns an ordered list of inner expressions. For example::
  350. >>> Sum(F('foo')).get_source_expressions()
  351. [F('foo')]
  352. .. method:: set_source_expressions(expressions)
  353. Takes a list of expressions and stores them such that
  354. ``get_source_expressions()`` can return them.
  355. .. method:: relabeled_clone(change_map)
  356. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  357. Column aliases are renamed when subqueries are created.
  358. ``relabeled_clone()`` should also be called on any nested expressions
  359. and assigned to the clone.
  360. ``change_map`` is a dictionary mapping old aliases to new aliases.
  361. Example::
  362. def relabeled_clone(self, change_map):
  363. clone = copy.copy(self)
  364. clone.expression = self.expression.relabeled_clone(change_map)
  365. return clone
  366. .. method:: convert_value(self, value, expression, connection, context)
  367. A hook allowing the expression to coerce ``value`` into a more
  368. appropriate type.
  369. .. method:: get_group_by_cols()
  370. Responsible for returning the list of columns references by
  371. this expression. ``get_group_by_cols()`` should be called on any
  372. nested expressions. ``F()`` objects, in particular, hold a reference
  373. to a column.
  374. .. method:: asc()
  375. Returns the expression ready to be sorted in ascending order.
  376. .. method:: desc()
  377. Returns the expression ready to be sorted in descending order.
  378. .. method:: reverse_ordering()
  379. Returns ``self`` with any modifications required to reverse the sort
  380. order within an ``order_by`` call. As an example, an expression
  381. implementing ``NULLS LAST`` would change its value to be
  382. ``NULLS FIRST``. Modifications are only required for expressions that
  383. implement sort order like ``OrderBy``. This method is called when
  384. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  385. queryset.
  386. Writing your own Query Expressions
  387. ----------------------------------
  388. You can write your own query expression classes that use, and can integrate
  389. with, other query expressions. Let's step through an example by writing an
  390. implementation of the ``COALESCE`` SQL function, without using the built-in
  391. :ref:`Func() expressions <func-expressions>`.
  392. The ``COALESCE`` SQL function is defined as taking a list of columns or
  393. values. It will return the first column or value that isn't ``NULL``.
  394. We'll start by defining the template to be used for SQL generation and
  395. an ``__init__()`` method to set some attributes::
  396. import copy
  397. from django.db.models import Expression
  398. class Coalesce(Expression):
  399. template = 'COALESCE( %(expressions)s )'
  400. def __init__(self, expressions, output_field):
  401. super(Coalesce, self).__init__(output_field=output_field)
  402. if len(expressions) < 2:
  403. raise ValueError('expressions must have at least 2 elements')
  404. for expression in expressions:
  405. if not hasattr(expression, 'resolve_expression'):
  406. raise TypeError('%r is not an Expression' % expression)
  407. self.expressions = expressions
  408. We do some basic validation on the parameters, including requiring at least
  409. 2 columns or values, and ensuring they are expressions. We are requiring
  410. ``output_field`` here so that Django knows what kind of model field to assign
  411. the eventual result to.
  412. Now we implement the pre-processing and validation. Since we do not have
  413. any of our own validation at this point, we just delegate to the nested
  414. expressions::
  415. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  416. c = self.copy()
  417. c.is_summary = summarize
  418. for pos, expression in enumerate(self.expressions):
  419. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  420. return c
  421. Next, we write the method responsible for generating the SQL::
  422. def as_sql(self, compiler, connection, template=None):
  423. sql_expressions, sql_params = [], []
  424. for expression in self.expressions:
  425. sql, params = compiler.compile(expression)
  426. sql_expressions.append(sql)
  427. sql_params.extend(params)
  428. template = template or self.template
  429. data = {'expressions': ','.join(sql_expressions)}
  430. return template % data, params
  431. def as_oracle(self, compiler, connection):
  432. """
  433. Example of vendor specific handling (Oracle in this case).
  434. Let's make the function name lowercase.
  435. """
  436. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  437. ``as_sql()`` methods can support custom keyword arguments, allowing
  438. ``as_vendorname()`` methods to override data used to generate the SQL string.
  439. Using ``as_sql()`` keyword arguments for customization is preferable to
  440. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  441. errors when running on different database backends. If your class relies on
  442. class attributes to define data, consider allowing overrides in your
  443. ``as_sql()`` method.
  444. We generate the SQL for each of the ``expressions`` by using the
  445. ``compiler.compile()`` method, and join the result together with commas.
  446. Then the template is filled out with our data and the SQL and parameters
  447. are returned.
  448. We've also defined a custom implementation that is specific to the Oracle
  449. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  450. if the Oracle backend is in use.
  451. Finally, we implement the rest of the methods that allow our query expression
  452. to play nice with other query expressions::
  453. def get_source_expressions(self):
  454. return self.expressions
  455. def set_source_expressions(self, expressions):
  456. self.expressions = expressions
  457. Let's see how it works::
  458. >>> from django.db.models import F, Value, CharField
  459. >>> qs = Company.objects.annotate(
  460. ... tagline=Coalesce([
  461. ... F('motto'),
  462. ... F('ticker_name'),
  463. ... F('description'),
  464. ... Value('No Tagline')
  465. ... ], output_field=CharField()))
  466. >>> for c in qs:
  467. ... print("%s: %s" % (c.name, c.tagline))
  468. ...
  469. Google: Do No Evil
  470. Apple: AAPL
  471. Yahoo: Internet Company
  472. Django Software Foundation: No Tagline
  473. Adding support in third-party database backends
  474. -----------------------------------------------
  475. If you're using a database backend that uses a different SQL syntax for a
  476. certain function, you can add support for it by monkey patching a new method
  477. onto the function's class.
  478. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  479. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  480. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  481. class::
  482. from django.db.models.functions import Length
  483. def sqlserver_length(self, compiler, connection):
  484. return self.as_sql(compiler, connection, function='LEN')
  485. Length.as_sqlserver = sqlserver_length
  486. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  487. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  488. ``sqlserver`` for the backend.
  489. Third-party backends can register their functions in the top level
  490. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  491. file (or package) that is imported from the top level ``__init__.py``.
  492. For user projects wishing to patch the backend that they're using, this code
  493. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.