expressions.txt 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. There are a
  7. number of built-in expressions (documented below) that can be used to help you
  8. write queries. Expressions can be combined, or in some cases nested, to form
  9. more complex computations.
  10. Supported arithmetic
  11. ====================
  12. Django supports addition, subtraction, multiplication, division, modulo
  13. arithmetic, and the power operator on query expressions, using Python constants,
  14. variables, and even other expressions.
  15. Some examples
  16. =============
  17. .. code-block:: python
  18. from django.db.models import F, Count, Value
  19. from django.db.models.functions import Length, Upper
  20. # Find companies that have more employees than chairs.
  21. Company.objects.filter(num_employees__gt=F('num_chairs'))
  22. # Find companies that have at least twice as many employees
  23. # as chairs. Both the querysets below are equivalent.
  24. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  25. Company.objects.filter(
  26. num_employees__gt=F('num_chairs') + F('num_chairs'))
  27. # How many chairs are needed for each company to seat all employees?
  28. >>> company = Company.objects.filter(
  29. ... num_employees__gt=F('num_chairs')).annotate(
  30. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  31. >>> company.num_employees
  32. 120
  33. >>> company.num_chairs
  34. 50
  35. >>> company.chairs_needed
  36. 70
  37. # Create a new company using expressions.
  38. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  39. # Be sure to refresh it if you need to access the field.
  40. >>> company.refresh_from_db()
  41. >>> company.ticker
  42. 'GOOG'
  43. # Annotate models with an aggregated value. Both forms
  44. # below are equivalent.
  45. Company.objects.annotate(num_products=Count('products'))
  46. Company.objects.annotate(num_products=Count(F('products')))
  47. # Aggregates can contain complex computations also
  48. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  49. # Expressions can also be used in order_by()
  50. Company.objects.order_by(Length('name').asc())
  51. Company.objects.order_by(Length('name').desc())
  52. Built-in Expressions
  53. ====================
  54. .. note::
  55. These expressions are defined in ``django.db.models.expressions`` and
  56. ``django.db.models.aggregates``, but for convenience they're available and
  57. usually imported from :mod:`django.db.models`.
  58. ``F()`` expressions
  59. -------------------
  60. .. class:: F
  61. An ``F()`` object represents the value of a model field or annotated column. It
  62. makes it possible to refer to model field values and perform database
  63. operations using them without actually having to pull them out of the database
  64. into Python memory.
  65. Instead, Django uses the ``F()`` object to generate an SQL expression that
  66. describes the required operation at the database level.
  67. This is easiest to understand through an example. Normally, one might do
  68. something like this::
  69. # Tintin filed a news story!
  70. reporter = Reporters.objects.get(name='Tintin')
  71. reporter.stories_filed += 1
  72. reporter.save()
  73. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  74. into memory and manipulated it using familiar Python operators, and then saved
  75. the object back to the database. But instead we could also have done::
  76. from django.db.models import F
  77. reporter = Reporters.objects.get(name='Tintin')
  78. reporter.stories_filed = F('stories_filed') + 1
  79. reporter.save()
  80. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  81. normal Python assignment of value to an instance attribute, in fact it's an SQL
  82. construct describing an operation on the database.
  83. When Django encounters an instance of ``F()``, it overrides the standard Python
  84. operators to create an encapsulated SQL expression; in this case, one which
  85. instructs the database to increment the database field represented by
  86. ``reporter.stories_filed``.
  87. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  88. know about it - it is dealt with entirely by the database. All Python does,
  89. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  90. and describe the operation.
  91. To access the new value saved this way, the object must be reloaded::
  92. reporter = Reporters.objects.get(pk=reporter.pk)
  93. # Or, more succinctly:
  94. reporter.refresh_from_db()
  95. As well as being used in operations on single instances as above, ``F()`` can
  96. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  97. the two queries we were using above - the ``get()`` and the
  98. :meth:`~Model.save()` - to just one::
  99. reporter = Reporters.objects.filter(name='Tintin')
  100. reporter.update(stories_filed=F('stories_filed') + 1)
  101. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  102. the field value on multiple objects - which could be very much faster than
  103. pulling them all into Python from the database, looping over them, incrementing
  104. the field value of each one, and saving each one back to the database::
  105. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  106. ``F()`` therefore can offer performance advantages by:
  107. * getting the database, rather than Python, to do work
  108. * reducing the number of queries some operations require
  109. .. _avoiding-race-conditions-using-f:
  110. Avoiding race conditions using ``F()``
  111. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  112. Another useful benefit of ``F()`` is that having the database - rather than
  113. Python - update a field's value avoids a *race condition*.
  114. If two Python threads execute the code in the first example above, one thread
  115. could retrieve, increment, and save a field's value after the other has
  116. retrieved it from the database. The value that the second thread saves will be
  117. based on the original value; the work of the first thread will simply be lost.
  118. If the database is responsible for updating the field, the process is more
  119. robust: it will only ever update the field based on the value of the field in
  120. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  121. than based on its value when the instance was retrieved.
  122. ``F()`` assignments persist after ``Model.save()``
  123. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  124. ``F()`` objects assigned to model fields persist after saving the model
  125. instance and will be applied on each :meth:`~Model.save()`. For example::
  126. reporter = Reporters.objects.get(name='Tintin')
  127. reporter.stories_filed = F('stories_filed') + 1
  128. reporter.save()
  129. reporter.name = 'Tintin Jr.'
  130. reporter.save()
  131. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  132. the final value will be ``3``.
  133. Using ``F()`` in filters
  134. ~~~~~~~~~~~~~~~~~~~~~~~~
  135. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  136. possible to filter a set of objects against criteria based on their field
  137. values, rather than on Python values.
  138. This is documented in :ref:`using F() expressions in queries
  139. <using-f-expressions-in-filters>`.
  140. .. _using-f-with-annotations:
  141. Using ``F()`` with annotations
  142. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  143. ``F()`` can be used to create dynamic fields on your models by combining
  144. different fields with arithmetic::
  145. company = Company.objects.annotate(
  146. chairs_needed=F('num_employees') - F('num_chairs'))
  147. If the fields that you're combining are of different types you'll need
  148. to tell Django what kind of field will be returned. Since ``F()`` does not
  149. directly support ``output_field`` you will need to wrap the expression with
  150. :class:`ExpressionWrapper`::
  151. from django.db.models import DateTimeField, ExpressionWrapper, F
  152. Ticket.objects.annotate(
  153. expires=ExpressionWrapper(
  154. F('active_at') + F('duration'), output_field=DateTimeField()))
  155. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  156. primary key value rather than a model instance::
  157. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  158. >> car.manufacturer
  159. <Manufacturer: Toyota>
  160. >> car.built_by
  161. 3
  162. .. _func-expressions:
  163. ``Func()`` expressions
  164. ----------------------
  165. ``Func()`` expressions are the base type of all expressions that involve
  166. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  167. They can be used directly::
  168. from django.db.models import Func, F
  169. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  170. or they can be used to build a library of database functions::
  171. class Lower(Func):
  172. function = 'LOWER'
  173. queryset.annotate(field_lower=Lower('field'))
  174. But both cases will result in a queryset where each model is annotated with an
  175. extra attribute ``field_lower`` produced, roughly, from the following SQL::
  176. SELECT
  177. ...
  178. LOWER("db_table"."field") as "field_lower"
  179. See :doc:`database-functions` for a list of built-in database functions.
  180. The ``Func`` API is as follows:
  181. .. class:: Func(*expressions, **extra)
  182. .. attribute:: function
  183. A class attribute describing the function that will be generated.
  184. Specifically, the ``function`` will be interpolated as the ``function``
  185. placeholder within :attr:`template`. Defaults to ``None``.
  186. .. attribute:: template
  187. A class attribute, as a format string, that describes the SQL that is
  188. generated for this function. Defaults to
  189. ``'%(function)s(%(expressions)s)'``.
  190. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  191. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  192. ``template`` attribute because the string is interpolated twice: once
  193. during the template interpolation in ``as_sql()`` and once in the SQL
  194. interpolation with the query parameters in the database cursor.
  195. .. attribute:: arg_joiner
  196. A class attribute that denotes the character used to join the list of
  197. ``expressions`` together. Defaults to ``', '``.
  198. .. attribute:: arity
  199. A class attribute that denotes the number of arguments the function
  200. accepts. If this attribute is set and the function is called with a
  201. different number of expressions, ``TypeError`` will be raised. Defaults
  202. to ``None``.
  203. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  204. Generates the SQL for the database function.
  205. The ``as_vendor()`` methods should use the ``function``, ``template``,
  206. ``arg_joiner``, and any other ``**extra_context`` parameters to
  207. customize the SQL as needed. For example:
  208. .. snippet::
  209. :filename: django/db/models/functions.py
  210. class ConcatPair(Func):
  211. ...
  212. function = 'CONCAT'
  213. ...
  214. def as_mysql(self, compiler, connection):
  215. return super().as_sql(
  216. compiler, connection,
  217. function='CONCAT_WS',
  218. template="%(function)s('', %(expressions)s)",
  219. )
  220. The ``*expressions`` argument is a list of positional expressions that the
  221. function will be applied to. The expressions will be converted to strings,
  222. joined together with ``arg_joiner``, and then interpolated into the ``template``
  223. as the ``expressions`` placeholder.
  224. Positional arguments can be expressions or Python values. Strings are
  225. assumed to be column references and will be wrapped in ``F()`` expressions
  226. while other values will be wrapped in ``Value()`` expressions.
  227. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  228. into the ``template`` attribute. The ``function``, ``template``, and
  229. ``arg_joiner`` keywords can be used to replace the attributes of the same name
  230. without having to define your own class. ``output_field`` can be used to define
  231. the expected return type.
  232. ``Aggregate()`` expressions
  233. ---------------------------
  234. An aggregate expression is a special case of a :ref:`Func() expression
  235. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  236. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  237. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  238. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  239. some complex computations::
  240. from django.db.models import Count
  241. Company.objects.annotate(
  242. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  243. The ``Aggregate`` API is as follows:
  244. .. class:: Aggregate(expression, output_field=None, **extra)
  245. .. attribute:: template
  246. A class attribute, as a format string, that describes the SQL that is
  247. generated for this aggregate. Defaults to
  248. ``'%(function)s( %(expressions)s )'``.
  249. .. attribute:: function
  250. A class attribute describing the aggregate function that will be
  251. generated. Specifically, the ``function`` will be interpolated as the
  252. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  253. The ``expression`` argument can be the name of a field on the model, or another
  254. expression. It will be converted to a string and used as the ``expressions``
  255. placeholder within the ``template``.
  256. The ``output_field`` argument requires a model field instance, like
  257. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  258. after it's retrieved from the database. Usually no arguments are needed when
  259. instantiating the model field as any arguments relating to data validation
  260. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  261. output value.
  262. Note that ``output_field`` is only required when Django is unable to determine
  263. what field type the result should be. Complex expressions that mix field types
  264. should define the desired ``output_field``. For example, adding an
  265. ``IntegerField()`` and a ``FloatField()`` together should probably have
  266. ``output_field=FloatField()`` defined.
  267. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  268. into the ``template`` attribute.
  269. Creating your own Aggregate Functions
  270. -------------------------------------
  271. Creating your own aggregate is extremely easy. At a minimum, you need
  272. to define ``function``, but you can also completely customize the
  273. SQL that is generated. Here's a brief example::
  274. from django.db.models import Aggregate
  275. class Count(Aggregate):
  276. # supports COUNT(distinct field)
  277. function = 'COUNT'
  278. template = '%(function)s(%(distinct)s%(expressions)s)'
  279. def __init__(self, expression, distinct=False, **extra):
  280. super().__init__(
  281. expression,
  282. distinct='DISTINCT ' if distinct else '',
  283. output_field=IntegerField(),
  284. **extra
  285. )
  286. ``Value()`` expressions
  287. -----------------------
  288. .. class:: Value(value, output_field=None)
  289. A ``Value()`` object represents the smallest possible component of an
  290. expression: a simple value. When you need to represent the value of an integer,
  291. boolean, or string within an expression, you can wrap that value within a
  292. ``Value()``.
  293. You will rarely need to use ``Value()`` directly. When you write the expression
  294. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  295. allowing simple values to be used in more complex expressions. You will need to
  296. use ``Value()`` when you want to pass a string to an expression. Most
  297. expressions interpret a string argument as the name of a field, like
  298. ``Lower('name')``.
  299. The ``value`` argument describes the value to be included in the expression,
  300. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  301. values into their corresponding database type.
  302. The ``output_field`` argument should be a model field instance, like
  303. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  304. after it's retrieved from the database. Usually no arguments are needed when
  305. instantiating the model field as any arguments relating to data validation
  306. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  307. output value.
  308. ``ExpressionWrapper()`` expressions
  309. -----------------------------------
  310. .. class:: ExpressionWrapper(expression, output_field)
  311. ``ExpressionWrapper`` simply surrounds another expression and provides access
  312. to properties, such as ``output_field``, that may not be available on other
  313. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  314. ``F()`` expressions with different types as described in
  315. :ref:`using-f-with-annotations`.
  316. Conditional expressions
  317. -----------------------
  318. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  319. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  320. expressions. For more details see :doc:`conditional-expressions`.
  321. ``Subquery()`` expressions
  322. --------------------------
  323. .. class:: Subquery(queryset, output_field=None)
  324. .. versionadded:: 1.11
  325. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  326. expression.
  327. For example, to annotate each post with the email address of the author of the
  328. newest comment on that post::
  329. >>> from django.db.models import OuterRef, Subquery
  330. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  331. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  332. On PostgreSQL, the SQL looks like:
  333. .. code-block:: sql
  334. SELECT "post"."id", (
  335. SELECT U0."email"
  336. FROM "comment" U0
  337. WHERE U0."post_id" = ("post"."id")
  338. ORDER BY U0."created_at" DESC LIMIT 1
  339. ) AS "newest_commenter_email" FROM "post"
  340. .. note::
  341. The examples in this section are designed to show how to force
  342. Django to execute a subquery. In some cases it may be possible to
  343. write an equivalent queryset that performs the same task more
  344. clearly or efficiently.
  345. Referencing columns from the outer queryset
  346. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  347. .. class:: OuterRef(field)
  348. .. versionadded:: 1.11
  349. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  350. from the outer query. It acts like an :class:`F` expression except that the
  351. check to see if it refers to a valid field isn't made until the outer queryset
  352. is resolved.
  353. Instances of ``OuterRef`` may be used in conjunction with nested instances
  354. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  355. parent. For example, this queryset would need to be within a nested pair of
  356. ``Subquery`` instances to resolve correctly::
  357. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  358. Limiting a subquery to a single column
  359. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  360. There are times when a single column must be returned from a ``Subquery``, for
  361. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  362. all comments for posts published within the last day::
  363. >>> from datetime import timedelta
  364. >>> from django.utils import timezone
  365. >>> one_day_ago = timezone.now() - timedelta(days=1)
  366. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  367. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  368. In this case, the subquery must use :meth:`~.QuerySet.values`
  369. to return only a single column: the primary key of the post.
  370. Limiting the subquery to a single row
  371. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  372. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  373. queryset is used::
  374. >>> subquery = Subquery(newest.values('email')[:1])
  375. >>> Post.objects.annotate(newest_commenter_email=subquery)
  376. In this case, the subquery must only return a single column *and* a single
  377. row: the email address of the most recently created comment.
  378. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  379. ``OuterRef`` cannot be resolved until the queryset is used within a
  380. ``Subquery``.)
  381. ``Exists()`` subqueries
  382. ~~~~~~~~~~~~~~~~~~~~~~~
  383. .. class:: Exists(queryset)
  384. .. versionadded:: 1.11
  385. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  386. many cases it will perform better than a subquery since the database is able to
  387. stop evaluation of the subquery when a first matching row is found.
  388. For example, to annotate each post with whether or not it has a comment from
  389. within the last day::
  390. >>> from django.db.models import Exists, OuterRef
  391. >>> from datetime import timedelta
  392. >>> from django.utils import timezone
  393. >>> one_day_ago = timezone.now() - timedelta(days=1)
  394. >>> recent_comments = Comment.objects.filter(
  395. ... post=OuterRef('pk'),
  396. ... created_at__gte=one_day_ago,
  397. ... )
  398. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  399. On PostgreSQL, the SQL looks like:
  400. .. code-block:: sql
  401. SELECT "post"."id", "post"."published_at", EXISTS(
  402. SELECT U0."id", U0."post_id", U0."email", U0."created_at"
  403. FROM "comment" U0
  404. WHERE (
  405. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  406. U0."post_id" = ("post"."id")
  407. )
  408. ) AS "recent_comment" FROM "post"
  409. It's unnecessary to force ``Exists`` to refer to a single column, since the
  410. columns are discarded and a boolean result is returned. Similarly, since
  411. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  412. degrade performance, it's automatically removed.
  413. You can query using ``NOT EXISTS`` with ``~Exists()``.
  414. Filtering on a ``Subquery`` expression
  415. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  416. It's not possible to filter directly using ``Subquery`` and ``Exists``, e.g.::
  417. >>> Post.objects.filter(Exists(recent_comments))
  418. ...
  419. TypeError: 'Exists' object is not iterable
  420. You must filter on a subquery expression by first annotating the queryset
  421. and then filtering based on that annotation::
  422. >>> Post.objects.annotate(
  423. ... recent_comment=Exists(recent_comments),
  424. ... ).filter(recent_comment=True)
  425. Using aggregates within a ``Subquery`` expression
  426. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  427. Aggregates may be used within a ``Subquery``, but they require a specific
  428. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  429. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  430. Assuming both models have a ``length`` field, to find posts where the post
  431. length is greater than the total length of all combined comments::
  432. >>> from django.db.models import OuterRef, Subquery, Sum
  433. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  434. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  435. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  436. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  437. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  438. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  439. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  440. which these queryset methods are applied is important. In this case, since the
  441. subquery must be limited to a single column, ``values('total')`` is required.
  442. This is the only way to perform an aggregation within a ``Subquery``, as
  443. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  444. there is an ``OuterRef``, this will not be possible to resolve).
  445. Raw SQL expressions
  446. -------------------
  447. .. currentmodule:: django.db.models.expressions
  448. .. class:: RawSQL(sql, params, output_field=None)
  449. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  450. In these edge cases, use the ``RawSQL`` expression. For example::
  451. >>> from django.db.models.expressions import RawSQL
  452. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
  453. These extra lookups may not be portable to different database engines (because
  454. you're explicitly writing SQL code) and violate the DRY principle, so you
  455. should avoid them if possible.
  456. .. warning::
  457. You should be very careful to escape any parameters that the user can
  458. control by using ``params`` in order to protect against :ref:`SQL injection
  459. attacks <sql-injection-protection>`. ``params`` is a required argument to
  460. force you to acknowledge that you're not interpolating your SQL with user
  461. provided data.
  462. .. currentmodule:: django.db.models
  463. Technical Information
  464. =====================
  465. Below you'll find technical implementation details that may be useful to
  466. library authors. The technical API and examples below will help with
  467. creating generic query expressions that can extend the built-in functionality
  468. that Django provides.
  469. Expression API
  470. --------------
  471. Query expressions implement the :ref:`query expression API <query-expression>`,
  472. but also expose a number of extra methods and attributes listed below. All
  473. query expressions must inherit from ``Expression()`` or a relevant
  474. subclass.
  475. When a query expression wraps another expression, it is responsible for
  476. calling the appropriate methods on the wrapped expression.
  477. .. class:: Expression
  478. .. attribute:: contains_aggregate
  479. Tells Django that this expression contains an aggregate and that a
  480. ``GROUP BY`` clause needs to be added to the query.
  481. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  482. Provides the chance to do any pre-processing or validation of
  483. the expression before it's added to the query. ``resolve_expression()``
  484. must also be called on any nested expressions. A ``copy()`` of ``self``
  485. should be returned with any necessary transformations.
  486. ``query`` is the backend query implementation.
  487. ``allow_joins`` is a boolean that allows or denies the use of
  488. joins in the query.
  489. ``reuse`` is a set of reusable joins for multi-join scenarios.
  490. ``summarize`` is a boolean that, when ``True``, signals that the
  491. query being computed is a terminal aggregate query.
  492. .. method:: get_source_expressions()
  493. Returns an ordered list of inner expressions. For example::
  494. >>> Sum(F('foo')).get_source_expressions()
  495. [F('foo')]
  496. .. method:: set_source_expressions(expressions)
  497. Takes a list of expressions and stores them such that
  498. ``get_source_expressions()`` can return them.
  499. .. method:: relabeled_clone(change_map)
  500. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  501. Column aliases are renamed when subqueries are created.
  502. ``relabeled_clone()`` should also be called on any nested expressions
  503. and assigned to the clone.
  504. ``change_map`` is a dictionary mapping old aliases to new aliases.
  505. Example::
  506. def relabeled_clone(self, change_map):
  507. clone = copy.copy(self)
  508. clone.expression = self.expression.relabeled_clone(change_map)
  509. return clone
  510. .. method:: convert_value(value, expression, connection)
  511. A hook allowing the expression to coerce ``value`` into a more
  512. appropriate type.
  513. .. method:: get_group_by_cols()
  514. Responsible for returning the list of columns references by
  515. this expression. ``get_group_by_cols()`` should be called on any
  516. nested expressions. ``F()`` objects, in particular, hold a reference
  517. to a column.
  518. .. method:: asc(nulls_first=False, nulls_last=False)
  519. Returns the expression ready to be sorted in ascending order.
  520. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  521. .. versionchanged:: 1.11
  522. The ``nulls_last`` and ``nulls_first`` parameters were added.
  523. .. method:: desc(nulls_first=False, nulls_last=False)
  524. Returns the expression ready to be sorted in descending order.
  525. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  526. .. versionchanged:: 1.11
  527. The ``nulls_first`` and ``nulls_last`` parameters were added.
  528. .. method:: reverse_ordering()
  529. Returns ``self`` with any modifications required to reverse the sort
  530. order within an ``order_by`` call. As an example, an expression
  531. implementing ``NULLS LAST`` would change its value to be
  532. ``NULLS FIRST``. Modifications are only required for expressions that
  533. implement sort order like ``OrderBy``. This method is called when
  534. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  535. queryset.
  536. Writing your own Query Expressions
  537. ----------------------------------
  538. You can write your own query expression classes that use, and can integrate
  539. with, other query expressions. Let's step through an example by writing an
  540. implementation of the ``COALESCE`` SQL function, without using the built-in
  541. :ref:`Func() expressions <func-expressions>`.
  542. The ``COALESCE`` SQL function is defined as taking a list of columns or
  543. values. It will return the first column or value that isn't ``NULL``.
  544. We'll start by defining the template to be used for SQL generation and
  545. an ``__init__()`` method to set some attributes::
  546. import copy
  547. from django.db.models import Expression
  548. class Coalesce(Expression):
  549. template = 'COALESCE( %(expressions)s )'
  550. def __init__(self, expressions, output_field):
  551. super().__init__(output_field=output_field)
  552. if len(expressions) < 2:
  553. raise ValueError('expressions must have at least 2 elements')
  554. for expression in expressions:
  555. if not hasattr(expression, 'resolve_expression'):
  556. raise TypeError('%r is not an Expression' % expression)
  557. self.expressions = expressions
  558. We do some basic validation on the parameters, including requiring at least
  559. 2 columns or values, and ensuring they are expressions. We are requiring
  560. ``output_field`` here so that Django knows what kind of model field to assign
  561. the eventual result to.
  562. Now we implement the pre-processing and validation. Since we do not have
  563. any of our own validation at this point, we just delegate to the nested
  564. expressions::
  565. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  566. c = self.copy()
  567. c.is_summary = summarize
  568. for pos, expression in enumerate(self.expressions):
  569. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  570. return c
  571. Next, we write the method responsible for generating the SQL::
  572. def as_sql(self, compiler, connection, template=None):
  573. sql_expressions, sql_params = [], []
  574. for expression in self.expressions:
  575. sql, params = compiler.compile(expression)
  576. sql_expressions.append(sql)
  577. sql_params.extend(params)
  578. template = template or self.template
  579. data = {'expressions': ','.join(sql_expressions)}
  580. return template % data, params
  581. def as_oracle(self, compiler, connection):
  582. """
  583. Example of vendor specific handling (Oracle in this case).
  584. Let's make the function name lowercase.
  585. """
  586. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  587. ``as_sql()`` methods can support custom keyword arguments, allowing
  588. ``as_vendorname()`` methods to override data used to generate the SQL string.
  589. Using ``as_sql()`` keyword arguments for customization is preferable to
  590. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  591. errors when running on different database backends. If your class relies on
  592. class attributes to define data, consider allowing overrides in your
  593. ``as_sql()`` method.
  594. We generate the SQL for each of the ``expressions`` by using the
  595. ``compiler.compile()`` method, and join the result together with commas.
  596. Then the template is filled out with our data and the SQL and parameters
  597. are returned.
  598. We've also defined a custom implementation that is specific to the Oracle
  599. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  600. if the Oracle backend is in use.
  601. Finally, we implement the rest of the methods that allow our query expression
  602. to play nice with other query expressions::
  603. def get_source_expressions(self):
  604. return self.expressions
  605. def set_source_expressions(self, expressions):
  606. self.expressions = expressions
  607. Let's see how it works::
  608. >>> from django.db.models import F, Value, CharField
  609. >>> qs = Company.objects.annotate(
  610. ... tagline=Coalesce([
  611. ... F('motto'),
  612. ... F('ticker_name'),
  613. ... F('description'),
  614. ... Value('No Tagline')
  615. ... ], output_field=CharField()))
  616. >>> for c in qs:
  617. ... print("%s: %s" % (c.name, c.tagline))
  618. ...
  619. Google: Do No Evil
  620. Apple: AAPL
  621. Yahoo: Internet Company
  622. Django Software Foundation: No Tagline
  623. Adding support in third-party database backends
  624. -----------------------------------------------
  625. If you're using a database backend that uses a different SQL syntax for a
  626. certain function, you can add support for it by monkey patching a new method
  627. onto the function's class.
  628. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  629. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  630. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  631. class::
  632. from django.db.models.functions import Length
  633. def sqlserver_length(self, compiler, connection):
  634. return self.as_sql(compiler, connection, function='LEN')
  635. Length.as_sqlserver = sqlserver_length
  636. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  637. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  638. ``sqlserver`` for the backend.
  639. Third-party backends can register their functions in the top level
  640. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  641. file (or package) that is imported from the top level ``__init__.py``.
  642. For user projects wishing to patch the backend that they're using, this code
  643. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.