expressions.txt 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. When an
  7. expression outputs a boolean value, it may be used directly in filters. There
  8. are a number of built-in expressions (documented below) that can be used to
  9. help you write queries. Expressions can be combined, or in some cases nested,
  10. to form more complex computations.
  11. Supported arithmetic
  12. ====================
  13. Django supports negation, addition, subtraction, multiplication, division,
  14. modulo arithmetic, and the power operator on query expressions, using Python
  15. constants, variables, and even other expressions.
  16. Some examples
  17. =============
  18. .. code-block:: python
  19. from django.db.models import Count, F, Value
  20. from django.db.models.functions import Length, Upper
  21. from django.db.models.lookups import GreaterThan
  22. # Find companies that have more employees than chairs.
  23. Company.objects.filter(num_employees__gt=F('num_chairs'))
  24. # Find companies that have at least twice as many employees
  25. # as chairs. Both the querysets below are equivalent.
  26. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  27. Company.objects.filter(
  28. num_employees__gt=F('num_chairs') + F('num_chairs'))
  29. # How many chairs are needed for each company to seat all employees?
  30. >>> company = Company.objects.filter(
  31. ... num_employees__gt=F('num_chairs')).annotate(
  32. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  33. >>> company.num_employees
  34. 120
  35. >>> company.num_chairs
  36. 50
  37. >>> company.chairs_needed
  38. 70
  39. # Create a new company using expressions.
  40. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  41. # Be sure to refresh it if you need to access the field.
  42. >>> company.refresh_from_db()
  43. >>> company.ticker
  44. 'GOOG'
  45. # Annotate models with an aggregated value. Both forms
  46. # below are equivalent.
  47. Company.objects.annotate(num_products=Count('products'))
  48. Company.objects.annotate(num_products=Count(F('products')))
  49. # Aggregates can contain complex computations also
  50. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  51. # Expressions can also be used in order_by(), either directly
  52. Company.objects.order_by(Length('name').asc())
  53. Company.objects.order_by(Length('name').desc())
  54. # or using the double underscore lookup syntax.
  55. from django.db.models import CharField
  56. from django.db.models.functions import Length
  57. CharField.register_lookup(Length)
  58. Company.objects.order_by('name__length')
  59. # Boolean expression can be used directly in filters.
  60. from django.db.models import Exists
  61. Company.objects.filter(
  62. Exists(Employee.objects.filter(company=OuterRef('pk'), salary__gt=10))
  63. )
  64. # Lookup expressions can also be used directly in filters
  65. Company.objects.filter(GreaterThan(F('num_employees'), F('num_chairs')))
  66. # or annotations.
  67. Company.objects.annotate(
  68. need_chairs=GreaterThan(F('num_employees'), F('num_chairs')),
  69. )
  70. Built-in Expressions
  71. ====================
  72. .. note::
  73. These expressions are defined in ``django.db.models.expressions`` and
  74. ``django.db.models.aggregates``, but for convenience they're available and
  75. usually imported from :mod:`django.db.models`.
  76. ``F()`` expressions
  77. -------------------
  78. .. class:: F
  79. An ``F()`` object represents the value of a model field, transformed value of a
  80. model field, or annotated column. It makes it possible to refer to model field
  81. values and perform database operations using them without actually having to
  82. pull them out of the database into Python memory.
  83. Instead, Django uses the ``F()`` object to generate an SQL expression that
  84. describes the required operation at the database level.
  85. Let's try this with an example. Normally, one might do something like this::
  86. # Tintin filed a news story!
  87. reporter = Reporters.objects.get(name='Tintin')
  88. reporter.stories_filed += 1
  89. reporter.save()
  90. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  91. into memory and manipulated it using familiar Python operators, and then saved
  92. the object back to the database. But instead we could also have done::
  93. from django.db.models import F
  94. reporter = Reporters.objects.get(name='Tintin')
  95. reporter.stories_filed = F('stories_filed') + 1
  96. reporter.save()
  97. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  98. normal Python assignment of value to an instance attribute, in fact it's an SQL
  99. construct describing an operation on the database.
  100. When Django encounters an instance of ``F()``, it overrides the standard Python
  101. operators to create an encapsulated SQL expression; in this case, one which
  102. instructs the database to increment the database field represented by
  103. ``reporter.stories_filed``.
  104. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  105. know about it - it is dealt with entirely by the database. All Python does,
  106. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  107. and describe the operation.
  108. To access the new value saved this way, the object must be reloaded::
  109. reporter = Reporters.objects.get(pk=reporter.pk)
  110. # Or, more succinctly:
  111. reporter.refresh_from_db()
  112. As well as being used in operations on single instances as above, ``F()`` can
  113. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  114. the two queries we were using above - the ``get()`` and the
  115. :meth:`~Model.save()` - to just one::
  116. reporter = Reporters.objects.filter(name='Tintin')
  117. reporter.update(stories_filed=F('stories_filed') + 1)
  118. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  119. the field value on multiple objects - which could be very much faster than
  120. pulling them all into Python from the database, looping over them, incrementing
  121. the field value of each one, and saving each one back to the database::
  122. Reporter.objects.update(stories_filed=F('stories_filed') + 1)
  123. ``F()`` therefore can offer performance advantages by:
  124. * getting the database, rather than Python, to do work
  125. * reducing the number of queries some operations require
  126. .. _avoiding-race-conditions-using-f:
  127. Avoiding race conditions using ``F()``
  128. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  129. Another useful benefit of ``F()`` is that having the database - rather than
  130. Python - update a field's value avoids a *race condition*.
  131. If two Python threads execute the code in the first example above, one thread
  132. could retrieve, increment, and save a field's value after the other has
  133. retrieved it from the database. The value that the second thread saves will be
  134. based on the original value; the work of the first thread will be lost.
  135. If the database is responsible for updating the field, the process is more
  136. robust: it will only ever update the field based on the value of the field in
  137. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  138. than based on its value when the instance was retrieved.
  139. ``F()`` assignments persist after ``Model.save()``
  140. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  141. ``F()`` objects assigned to model fields persist after saving the model
  142. instance and will be applied on each :meth:`~Model.save()`. For example::
  143. reporter = Reporters.objects.get(name='Tintin')
  144. reporter.stories_filed = F('stories_filed') + 1
  145. reporter.save()
  146. reporter.name = 'Tintin Jr.'
  147. reporter.save()
  148. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  149. the final value will be ``3``. This persistence can be avoided by reloading the
  150. model object after saving it, for example, by using
  151. :meth:`~Model.refresh_from_db()`.
  152. Using ``F()`` in filters
  153. ~~~~~~~~~~~~~~~~~~~~~~~~
  154. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  155. possible to filter a set of objects against criteria based on their field
  156. values, rather than on Python values.
  157. This is documented in :ref:`using F() expressions in queries
  158. <using-f-expressions-in-filters>`.
  159. .. _using-f-with-annotations:
  160. Using ``F()`` with annotations
  161. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  162. ``F()`` can be used to create dynamic fields on your models by combining
  163. different fields with arithmetic::
  164. company = Company.objects.annotate(
  165. chairs_needed=F('num_employees') - F('num_chairs'))
  166. If the fields that you're combining are of different types you'll need
  167. to tell Django what kind of field will be returned. Since ``F()`` does not
  168. directly support ``output_field`` you will need to wrap the expression with
  169. :class:`ExpressionWrapper`::
  170. from django.db.models import DateTimeField, ExpressionWrapper, F
  171. Ticket.objects.annotate(
  172. expires=ExpressionWrapper(
  173. F('active_at') + F('duration'), output_field=DateTimeField()))
  174. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  175. primary key value rather than a model instance:
  176. .. code-block:: pycon
  177. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  178. >> car.manufacturer
  179. <Manufacturer: Toyota>
  180. >> car.built_by
  181. 3
  182. .. _using-f-to-sort-null-values:
  183. Using ``F()`` to sort null values
  184. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  185. Use ``F()`` and the ``nulls_first`` or ``nulls_last`` keyword argument to
  186. :meth:`.Expression.asc` or :meth:`~.Expression.desc` to control the ordering of
  187. a field's null values. By default, the ordering depends on your database.
  188. For example, to sort companies that haven't been contacted (``last_contacted``
  189. is null) after companies that have been contacted::
  190. from django.db.models import F
  191. Company.objects.order_by(F('last_contacted').desc(nulls_last=True))
  192. Using ``F()`` with logical operations
  193. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  194. .. versionadded:: 4.2
  195. ``F()`` expressions that output ``BooleanField`` can be logically negated with
  196. the inversion operator ``~F()``. For example, to swap the activation status of
  197. companies::
  198. from django.db.models import F
  199. Company.objects.update(is_active=~F('is_active'))
  200. .. _func-expressions:
  201. ``Func()`` expressions
  202. ----------------------
  203. ``Func()`` expressions are the base type of all expressions that involve
  204. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  205. They can be used directly::
  206. from django.db.models import F, Func
  207. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  208. or they can be used to build a library of database functions::
  209. class Lower(Func):
  210. function = 'LOWER'
  211. queryset.annotate(field_lower=Lower('field'))
  212. But both cases will result in a queryset where each model is annotated with an
  213. extra attribute ``field_lower`` produced, roughly, from the following SQL:
  214. .. code-block:: sql
  215. SELECT
  216. ...
  217. LOWER("db_table"."field") as "field_lower"
  218. See :doc:`database-functions` for a list of built-in database functions.
  219. The ``Func`` API is as follows:
  220. .. class:: Func(*expressions, **extra)
  221. .. attribute:: function
  222. A class attribute describing the function that will be generated.
  223. Specifically, the ``function`` will be interpolated as the ``function``
  224. placeholder within :attr:`template`. Defaults to ``None``.
  225. .. attribute:: template
  226. A class attribute, as a format string, that describes the SQL that is
  227. generated for this function. Defaults to
  228. ``'%(function)s(%(expressions)s)'``.
  229. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  230. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  231. ``template`` attribute because the string is interpolated twice: once
  232. during the template interpolation in ``as_sql()`` and once in the SQL
  233. interpolation with the query parameters in the database cursor.
  234. .. attribute:: arg_joiner
  235. A class attribute that denotes the character used to join the list of
  236. ``expressions`` together. Defaults to ``', '``.
  237. .. attribute:: arity
  238. A class attribute that denotes the number of arguments the function
  239. accepts. If this attribute is set and the function is called with a
  240. different number of expressions, ``TypeError`` will be raised. Defaults
  241. to ``None``.
  242. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  243. Generates the SQL fragment for the database function. Returns a tuple
  244. ``(sql, params)``, where ``sql`` is the SQL string, and ``params`` is
  245. the list or tuple of query parameters.
  246. The ``as_vendor()`` methods should use the ``function``, ``template``,
  247. ``arg_joiner``, and any other ``**extra_context`` parameters to
  248. customize the SQL as needed. For example:
  249. .. code-block:: python
  250. :caption: ``django/db/models/functions.py``
  251. class ConcatPair(Func):
  252. ...
  253. function = 'CONCAT'
  254. ...
  255. def as_mysql(self, compiler, connection, **extra_context):
  256. return super().as_sql(
  257. compiler, connection,
  258. function='CONCAT_WS',
  259. template="%(function)s('', %(expressions)s)",
  260. **extra_context
  261. )
  262. To avoid an SQL injection vulnerability, ``extra_context`` :ref:`must
  263. not contain untrusted user input <avoiding-sql-injection-in-query-expressions>`
  264. as these values are interpolated into the SQL string rather than passed
  265. as query parameters, where the database driver would escape them.
  266. The ``*expressions`` argument is a list of positional expressions that the
  267. function will be applied to. The expressions will be converted to strings,
  268. joined together with ``arg_joiner``, and then interpolated into the ``template``
  269. as the ``expressions`` placeholder.
  270. Positional arguments can be expressions or Python values. Strings are
  271. assumed to be column references and will be wrapped in ``F()`` expressions
  272. while other values will be wrapped in ``Value()`` expressions.
  273. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  274. into the ``template`` attribute. To avoid an SQL injection vulnerability,
  275. ``extra`` :ref:`must not contain untrusted user input
  276. <avoiding-sql-injection-in-query-expressions>` as these values are interpolated
  277. into the SQL string rather than passed as query parameters, where the database
  278. driver would escape them.
  279. The ``function``, ``template``, and ``arg_joiner`` keywords can be used to
  280. replace the attributes of the same name without having to define your own
  281. class. ``output_field`` can be used to define the expected return type.
  282. ``Aggregate()`` expressions
  283. ---------------------------
  284. An aggregate expression is a special case of a :ref:`Func() expression
  285. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  286. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  287. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  288. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  289. some complex computations::
  290. from django.db.models import Count
  291. Company.objects.annotate(
  292. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  293. The ``Aggregate`` API is as follows:
  294. .. class:: Aggregate(*expressions, output_field=None, distinct=False, filter=None, default=None, **extra)
  295. .. attribute:: template
  296. A class attribute, as a format string, that describes the SQL that is
  297. generated for this aggregate. Defaults to
  298. ``'%(function)s(%(distinct)s%(expressions)s)'``.
  299. .. attribute:: function
  300. A class attribute describing the aggregate function that will be
  301. generated. Specifically, the ``function`` will be interpolated as the
  302. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  303. .. attribute:: window_compatible
  304. Defaults to ``True`` since most aggregate functions can be used as the
  305. source expression in :class:`~django.db.models.expressions.Window`.
  306. .. attribute:: allow_distinct
  307. A class attribute determining whether or not this aggregate function
  308. allows passing a ``distinct`` keyword argument. If set to ``False``
  309. (default), ``TypeError`` is raised if ``distinct=True`` is passed.
  310. .. attribute:: empty_result_set_value
  311. Defaults to ``None`` since most aggregate functions result in ``NULL``
  312. when applied to an empty result set.
  313. The ``expressions`` positional arguments can include expressions, transforms of
  314. the model field, or the names of model fields. They will be converted to a
  315. string and used as the ``expressions`` placeholder within the ``template``.
  316. The ``output_field`` argument requires a model field instance, like
  317. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  318. after it's retrieved from the database. Usually no arguments are needed when
  319. instantiating the model field as any arguments relating to data validation
  320. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  321. output value.
  322. Note that ``output_field`` is only required when Django is unable to determine
  323. what field type the result should be. Complex expressions that mix field types
  324. should define the desired ``output_field``. For example, adding an
  325. ``IntegerField()`` and a ``FloatField()`` together should probably have
  326. ``output_field=FloatField()`` defined.
  327. The ``distinct`` argument determines whether or not the aggregate function
  328. should be invoked for each distinct value of ``expressions`` (or set of
  329. values, for multiple ``expressions``). The argument is only supported on
  330. aggregates that have :attr:`~Aggregate.allow_distinct` set to ``True``.
  331. The ``filter`` argument takes a :class:`Q object <django.db.models.Q>` that's
  332. used to filter the rows that are aggregated. See :ref:`conditional-aggregation`
  333. and :ref:`filtering-on-annotations` for example usage.
  334. The ``default`` argument takes a value that will be passed along with the
  335. aggregate to :class:`~django.db.models.functions.Coalesce`. This is useful for
  336. specifying a value to be returned other than ``None`` when the queryset (or
  337. grouping) contains no entries.
  338. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  339. into the ``template`` attribute.
  340. Creating your own Aggregate Functions
  341. -------------------------------------
  342. You can create your own aggregate functions, too. At a minimum, you need to
  343. define ``function``, but you can also completely customize the SQL that is
  344. generated. Here's a brief example::
  345. from django.db.models import Aggregate
  346. class Sum(Aggregate):
  347. # Supports SUM(ALL field).
  348. function = 'SUM'
  349. template = '%(function)s(%(all_values)s%(expressions)s)'
  350. allow_distinct = False
  351. def __init__(self, expression, all_values=False, **extra):
  352. super().__init__(
  353. expression,
  354. all_values='ALL ' if all_values else '',
  355. **extra
  356. )
  357. ``Value()`` expressions
  358. -----------------------
  359. .. class:: Value(value, output_field=None)
  360. A ``Value()`` object represents the smallest possible component of an
  361. expression: a simple value. When you need to represent the value of an integer,
  362. boolean, or string within an expression, you can wrap that value within a
  363. ``Value()``.
  364. You will rarely need to use ``Value()`` directly. When you write the expression
  365. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  366. allowing simple values to be used in more complex expressions. You will need to
  367. use ``Value()`` when you want to pass a string to an expression. Most
  368. expressions interpret a string argument as the name of a field, like
  369. ``Lower('name')``.
  370. The ``value`` argument describes the value to be included in the expression,
  371. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  372. values into their corresponding database type.
  373. The ``output_field`` argument should be a model field instance, like
  374. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  375. after it's retrieved from the database. Usually no arguments are needed when
  376. instantiating the model field as any arguments relating to data validation
  377. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  378. output value. If no ``output_field`` is specified it will be tentatively
  379. inferred from the :py:class:`type` of the provided ``value``, if possible. For
  380. example, passing an instance of :py:class:`datetime.datetime` as ``value``
  381. would default ``output_field`` to :class:`~django.db.models.DateTimeField`.
  382. ``ExpressionWrapper()`` expressions
  383. -----------------------------------
  384. .. class:: ExpressionWrapper(expression, output_field)
  385. ``ExpressionWrapper`` surrounds another expression and provides access to
  386. properties, such as ``output_field``, that may not be available on other
  387. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  388. ``F()`` expressions with different types as described in
  389. :ref:`using-f-with-annotations`.
  390. Conditional expressions
  391. -----------------------
  392. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  393. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  394. expressions. For more details see :doc:`conditional-expressions`.
  395. ``Subquery()`` expressions
  396. --------------------------
  397. .. class:: Subquery(queryset, output_field=None)
  398. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  399. expression.
  400. For example, to annotate each post with the email address of the author of the
  401. newest comment on that post:
  402. .. code-block:: pycon
  403. >>> from django.db.models import OuterRef, Subquery
  404. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  405. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  406. On PostgreSQL, the SQL looks like:
  407. .. code-block:: sql
  408. SELECT "post"."id", (
  409. SELECT U0."email"
  410. FROM "comment" U0
  411. WHERE U0."post_id" = ("post"."id")
  412. ORDER BY U0."created_at" DESC LIMIT 1
  413. ) AS "newest_commenter_email" FROM "post"
  414. .. note::
  415. The examples in this section are designed to show how to force
  416. Django to execute a subquery. In some cases it may be possible to
  417. write an equivalent queryset that performs the same task more
  418. clearly or efficiently.
  419. Referencing columns from the outer queryset
  420. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  421. .. class:: OuterRef(field)
  422. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  423. from the outer query or its transform. It acts like an :class:`F` expression
  424. except that the check to see if it refers to a valid field isn't made until the
  425. outer queryset is resolved.
  426. Instances of ``OuterRef`` may be used in conjunction with nested instances
  427. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  428. parent. For example, this queryset would need to be within a nested pair of
  429. ``Subquery`` instances to resolve correctly:
  430. .. code-block:: pycon
  431. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  432. Limiting a subquery to a single column
  433. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  434. There are times when a single column must be returned from a ``Subquery``, for
  435. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  436. all comments for posts published within the last day:
  437. .. code-block:: pycon
  438. >>> from datetime import timedelta
  439. >>> from django.utils import timezone
  440. >>> one_day_ago = timezone.now() - timedelta(days=1)
  441. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  442. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  443. In this case, the subquery must use :meth:`~.QuerySet.values`
  444. to return only a single column: the primary key of the post.
  445. Limiting the subquery to a single row
  446. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  447. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  448. queryset is used:
  449. .. code-block:: pycon
  450. >>> subquery = Subquery(newest.values('email')[:1])
  451. >>> Post.objects.annotate(newest_commenter_email=subquery)
  452. In this case, the subquery must only return a single column *and* a single
  453. row: the email address of the most recently created comment.
  454. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  455. ``OuterRef`` cannot be resolved until the queryset is used within a
  456. ``Subquery``.)
  457. ``Exists()`` subqueries
  458. ~~~~~~~~~~~~~~~~~~~~~~~
  459. .. class:: Exists(queryset)
  460. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  461. many cases it will perform better than a subquery since the database is able to
  462. stop evaluation of the subquery when a first matching row is found.
  463. For example, to annotate each post with whether or not it has a comment from
  464. within the last day:
  465. .. code-block:: pycon
  466. >>> from django.db.models import Exists, OuterRef
  467. >>> from datetime import timedelta
  468. >>> from django.utils import timezone
  469. >>> one_day_ago = timezone.now() - timedelta(days=1)
  470. >>> recent_comments = Comment.objects.filter(
  471. ... post=OuterRef('pk'),
  472. ... created_at__gte=one_day_ago,
  473. ... )
  474. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  475. On PostgreSQL, the SQL looks like:
  476. .. code-block:: sql
  477. SELECT "post"."id", "post"."published_at", EXISTS(
  478. SELECT (1) as "a"
  479. FROM "comment" U0
  480. WHERE (
  481. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  482. U0."post_id" = "post"."id"
  483. )
  484. LIMIT 1
  485. ) AS "recent_comment" FROM "post"
  486. It's unnecessary to force ``Exists`` to refer to a single column, since the
  487. columns are discarded and a boolean result is returned. Similarly, since
  488. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  489. degrade performance, it's automatically removed.
  490. You can query using ``NOT EXISTS`` with ``~Exists()``.
  491. Filtering on a ``Subquery()`` or ``Exists()`` expressions
  492. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  493. ``Subquery()`` that returns a boolean value and ``Exists()`` may be used as a
  494. ``condition`` in :class:`~django.db.models.expressions.When` expressions, or to
  495. directly filter a queryset:
  496. .. code-block:: pycon
  497. >>> recent_comments = Comment.objects.filter(...) # From above
  498. >>> Post.objects.filter(Exists(recent_comments))
  499. This will ensure that the subquery will not be added to the ``SELECT`` columns,
  500. which may result in a better performance.
  501. Using aggregates within a ``Subquery`` expression
  502. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  503. Aggregates may be used within a ``Subquery``, but they require a specific
  504. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  505. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  506. Assuming both models have a ``length`` field, to find posts where the post
  507. length is greater than the total length of all combined comments:
  508. .. code-block:: pycon
  509. >>> from django.db.models import OuterRef, Subquery, Sum
  510. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  511. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  512. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  513. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  514. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  515. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  516. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  517. which these queryset methods are applied is important. In this case, since the
  518. subquery must be limited to a single column, ``values('total')`` is required.
  519. This is the only way to perform an aggregation within a ``Subquery``, as
  520. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  521. there is an ``OuterRef``, this will not be possible to resolve).
  522. Raw SQL expressions
  523. -------------------
  524. .. currentmodule:: django.db.models.expressions
  525. .. class:: RawSQL(sql, params, output_field=None)
  526. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  527. In these edge cases, use the ``RawSQL`` expression. For example:
  528. .. code-block:: pycon
  529. >>> from django.db.models.expressions import RawSQL
  530. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (param,)))
  531. These extra lookups may not be portable to different database engines (because
  532. you're explicitly writing SQL code) and violate the DRY principle, so you
  533. should avoid them if possible.
  534. ``RawSQL`` expressions can also be used as the target of ``__in`` filters:
  535. .. code-block:: pycon
  536. >>> queryset.filter(id__in=RawSQL("select id from sometable where col = %s", (param,)))
  537. .. warning::
  538. To protect against `SQL injection attacks
  539. <https://en.wikipedia.org/wiki/SQL_injection>`_, you must escape any
  540. parameters that the user can control by using ``params``. ``params`` is a
  541. required argument to force you to acknowledge that you're not interpolating
  542. your SQL with user-provided data.
  543. You also must not quote placeholders in the SQL string. This example is
  544. vulnerable to SQL injection because of the quotes around ``%s``:
  545. .. code-block:: pycon
  546. RawSQL("select col from sometable where othercol = '%s'") # unsafe!
  547. You can read more about how Django's :ref:`SQL injection protection
  548. <sql-injection-protection>` works.
  549. Window functions
  550. ----------------
  551. Window functions provide a way to apply functions on partitions. Unlike a
  552. normal aggregation function which computes a final result for each set defined
  553. by the group by, window functions operate on :ref:`frames <window-frames>` and
  554. partitions, and compute the result for each row.
  555. You can specify multiple windows in the same query which in Django ORM would be
  556. equivalent to including multiple expressions in a :doc:`QuerySet.annotate()
  557. </topics/db/aggregation>` call. The ORM doesn't make use of named windows,
  558. instead they are part of the selected columns.
  559. .. class:: Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)
  560. .. attribute:: template
  561. Defaults to ``%(expression)s OVER (%(window)s)'``. If only the
  562. ``expression`` argument is provided, the window clause will be blank.
  563. The ``Window`` class is the main expression for an ``OVER`` clause.
  564. The ``expression`` argument is either a :ref:`window function
  565. <window-functions>`, an :ref:`aggregate function <aggregation-functions>`, or
  566. an expression that's compatible in a window clause.
  567. The ``partition_by`` argument accepts an expression or a sequence of
  568. expressions (column names should be wrapped in an ``F``-object) that control
  569. the partitioning of the rows. Partitioning narrows which rows are used to
  570. compute the result set.
  571. The ``output_field`` is specified either as an argument or by the expression.
  572. The ``order_by`` argument accepts an expression on which you can call
  573. :meth:`~django.db.models.Expression.asc` and
  574. :meth:`~django.db.models.Expression.desc`, a string of a field name (with an
  575. optional ``"-"`` prefix which indicates descending order), or a tuple or list
  576. of strings and/or expressions. The ordering controls the order in which the
  577. expression is applied. For example, if you sum over the rows in a partition,
  578. the first result is the value of the first row, the second is the sum of first
  579. and second row.
  580. The ``frame`` parameter specifies which other rows that should be used in the
  581. computation. See :ref:`window-frames` for details.
  582. For example, to annotate each movie with the average rating for the movies by
  583. the same studio in the same genre and release year:
  584. .. code-block:: pycon
  585. >>> from django.db.models import Avg, F, Window
  586. >>> Movie.objects.annotate(
  587. >>> avg_rating=Window(
  588. >>> expression=Avg('rating'),
  589. >>> partition_by=[F('studio'), F('genre')],
  590. >>> order_by='released__year',
  591. >>> ),
  592. >>> )
  593. This allows you to check if a movie is rated better or worse than its peers.
  594. You may want to apply multiple expressions over the same window, i.e., the
  595. same partition and frame. For example, you could modify the previous example
  596. to also include the best and worst rating in each movie's group (same studio,
  597. genre, and release year) by using three window functions in the same query. The
  598. partition and ordering from the previous example is extracted into a dictionary
  599. to reduce repetition:
  600. .. code-block:: pycon
  601. >>> from django.db.models import Avg, F, Max, Min, Window
  602. >>> window = {
  603. >>> 'partition_by': [F('studio'), F('genre')],
  604. >>> 'order_by': 'released__year',
  605. >>> }
  606. >>> Movie.objects.annotate(
  607. >>> avg_rating=Window(
  608. >>> expression=Avg('rating'), **window,
  609. >>> ),
  610. >>> best=Window(
  611. >>> expression=Max('rating'), **window,
  612. >>> ),
  613. >>> worst=Window(
  614. >>> expression=Min('rating'), **window,
  615. >>> ),
  616. >>> )
  617. Filtering against window functions is supported as long as lookups are not
  618. disjunctive (not using ``OR`` or ``XOR`` as a connector) and against a queryset
  619. performing aggregation.
  620. For example, a query that relies on aggregation and has an ``OR``-ed filter
  621. against a window function and a field is not supported. Applying combined
  622. predicates post-aggregation could cause rows that would normally be excluded
  623. from groups to be included:
  624. .. code-block:: pycon
  625. >>> qs = Movie.objects.annotate(
  626. >>> category_rank=Window(
  627. >>> Rank(), partition_by='category', order_by='-rating'
  628. >>> ),
  629. >>> scenes_count=Count('actors'),
  630. >>> ).filter(
  631. >>> Q(category_rank__lte=3) | Q(title__contains='Batman')
  632. >>> )
  633. >>> list(qs)
  634. NotImplementedError: Heterogeneous disjunctive predicates against window functions
  635. are not implemented when performing conditional aggregation.
  636. .. versionchanged:: 4.2
  637. Support for filtering against window functions was added.
  638. Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
  639. support window expressions. Support for different window expression features
  640. varies among the different databases. For example, the options in
  641. :meth:`~django.db.models.Expression.asc` and
  642. :meth:`~django.db.models.Expression.desc` may not be supported. Consult the
  643. documentation for your database as needed.
  644. .. _window-frames:
  645. Frames
  646. ~~~~~~
  647. For a window frame, you can choose either a range-based sequence of rows or an
  648. ordinary sequence of rows.
  649. .. class:: ValueRange(start=None, end=None)
  650. .. attribute:: frame_type
  651. This attribute is set to ``'RANGE'``.
  652. PostgreSQL has limited support for ``ValueRange`` and only supports use of
  653. the standard start and end points, such as ``CURRENT ROW`` and ``UNBOUNDED
  654. FOLLOWING``.
  655. .. class:: RowRange(start=None, end=None)
  656. .. attribute:: frame_type
  657. This attribute is set to ``'ROWS'``.
  658. Both classes return SQL with the template:
  659. .. code-block:: sql
  660. %(frame_type)s BETWEEN %(start)s AND %(end)s
  661. Frames narrow the rows that are used for computing the result. They shift from
  662. some start point to some specified end point. Frames can be used with and
  663. without partitions, but it's often a good idea to specify an ordering of the
  664. window to ensure a deterministic result. In a frame, a peer in a frame is a row
  665. with an equivalent value, or all rows if an ordering clause isn't present.
  666. The default starting point for a frame is ``UNBOUNDED PRECEDING`` which is the
  667. first row of the partition. The end point is always explicitly included in the
  668. SQL generated by the ORM and is by default ``UNBOUNDED FOLLOWING``. The default
  669. frame includes all rows from the partition to the last row in the set.
  670. The accepted values for the ``start`` and ``end`` arguments are ``None``, an
  671. integer, or zero. A negative integer for ``start`` results in ``N preceding``,
  672. while ``None`` yields ``UNBOUNDED PRECEDING``. For both ``start`` and ``end``,
  673. zero will return ``CURRENT ROW``. Positive integers are accepted for ``end``.
  674. There's a difference in what ``CURRENT ROW`` includes. When specified in
  675. ``ROWS`` mode, the frame starts or ends with the current row. When specified in
  676. ``RANGE`` mode, the frame starts or ends at the first or last peer according to
  677. the ordering clause. Thus, ``RANGE CURRENT ROW`` evaluates the expression for
  678. rows which have the same value specified by the ordering. Because the template
  679. includes both the ``start`` and ``end`` points, this may be expressed with::
  680. ValueRange(start=0, end=0)
  681. If a movie's "peers" are described as movies released by the same studio in the
  682. same genre in the same year, this ``RowRange`` example annotates each movie
  683. with the average rating of a movie's two prior and two following peers:
  684. .. code-block:: pycon
  685. >>> from django.db.models import Avg, F, RowRange, Window
  686. >>> Movie.objects.annotate(
  687. >>> avg_rating=Window(
  688. >>> expression=Avg('rating'),
  689. >>> partition_by=[F('studio'), F('genre')],
  690. >>> order_by='released__year',
  691. >>> frame=RowRange(start=-2, end=2),
  692. >>> ),
  693. >>> )
  694. If the database supports it, you can specify the start and end points based on
  695. values of an expression in the partition. If the ``released`` field of the
  696. ``Movie`` model stores the release month of each movies, this ``ValueRange``
  697. example annotates each movie with the average rating of a movie's peers
  698. released between twelve months before and twelve months after the each movie:
  699. .. code-block:: pycon
  700. >>> from django.db.models import Avg, F, ValueRange, Window
  701. >>> Movie.objects.annotate(
  702. >>> avg_rating=Window(
  703. >>> expression=Avg('rating'),
  704. >>> partition_by=[F('studio'), F('genre')],
  705. >>> order_by='released__year',
  706. >>> frame=ValueRange(start=-12, end=12),
  707. >>> ),
  708. >>> )
  709. .. currentmodule:: django.db.models
  710. Technical Information
  711. =====================
  712. Below you'll find technical implementation details that may be useful to
  713. library authors. The technical API and examples below will help with
  714. creating generic query expressions that can extend the built-in functionality
  715. that Django provides.
  716. Expression API
  717. --------------
  718. Query expressions implement the :ref:`query expression API <query-expression>`,
  719. but also expose a number of extra methods and attributes listed below. All
  720. query expressions must inherit from ``Expression()`` or a relevant
  721. subclass.
  722. When a query expression wraps another expression, it is responsible for
  723. calling the appropriate methods on the wrapped expression.
  724. .. class:: Expression
  725. .. attribute:: contains_aggregate
  726. Tells Django that this expression contains an aggregate and that a
  727. ``GROUP BY`` clause needs to be added to the query.
  728. .. attribute:: contains_over_clause
  729. Tells Django that this expression contains a
  730. :class:`~django.db.models.expressions.Window` expression. It's used,
  731. for example, to disallow window function expressions in queries that
  732. modify data.
  733. .. attribute:: filterable
  734. Tells Django that this expression can be referenced in
  735. :meth:`.QuerySet.filter`. Defaults to ``True``.
  736. .. attribute:: window_compatible
  737. Tells Django that this expression can be used as the source expression
  738. in :class:`~django.db.models.expressions.Window`. Defaults to
  739. ``False``.
  740. .. attribute:: empty_result_set_value
  741. Tells Django which value should be returned when the expression is used
  742. to apply a function over an empty result set. Defaults to
  743. :py:data:`NotImplemented` which forces the expression to be computed on
  744. the database.
  745. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  746. Provides the chance to do any preprocessing or validation of
  747. the expression before it's added to the query. ``resolve_expression()``
  748. must also be called on any nested expressions. A ``copy()`` of ``self``
  749. should be returned with any necessary transformations.
  750. ``query`` is the backend query implementation.
  751. ``allow_joins`` is a boolean that allows or denies the use of
  752. joins in the query.
  753. ``reuse`` is a set of reusable joins for multi-join scenarios.
  754. ``summarize`` is a boolean that, when ``True``, signals that the
  755. query being computed is a terminal aggregate query.
  756. ``for_save`` is a boolean that, when ``True``, signals that the query
  757. being executed is performing a create or update.
  758. .. method:: get_source_expressions()
  759. Returns an ordered list of inner expressions. For example:
  760. .. code-block:: pycon
  761. >>> Sum(F('foo')).get_source_expressions()
  762. [F('foo')]
  763. .. method:: set_source_expressions(expressions)
  764. Takes a list of expressions and stores them such that
  765. ``get_source_expressions()`` can return them.
  766. .. method:: relabeled_clone(change_map)
  767. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  768. Column aliases are renamed when subqueries are created.
  769. ``relabeled_clone()`` should also be called on any nested expressions
  770. and assigned to the clone.
  771. ``change_map`` is a dictionary mapping old aliases to new aliases.
  772. Example::
  773. def relabeled_clone(self, change_map):
  774. clone = copy.copy(self)
  775. clone.expression = self.expression.relabeled_clone(change_map)
  776. return clone
  777. .. method:: convert_value(value, expression, connection)
  778. A hook allowing the expression to coerce ``value`` into a more
  779. appropriate type.
  780. ``expression`` is the same as ``self``.
  781. .. method:: get_group_by_cols()
  782. Responsible for returning the list of columns references by
  783. this expression. ``get_group_by_cols()`` should be called on any
  784. nested expressions. ``F()`` objects, in particular, hold a reference
  785. to a column.
  786. .. versionchanged:: 4.2
  787. The ``alias=None`` keyword argument was removed.
  788. .. method:: asc(nulls_first=None, nulls_last=None)
  789. Returns the expression ready to be sorted in ascending order.
  790. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  791. See :ref:`using-f-to-sort-null-values` for example usage.
  792. .. method:: desc(nulls_first=None, nulls_last=None)
  793. Returns the expression ready to be sorted in descending order.
  794. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  795. See :ref:`using-f-to-sort-null-values` for example usage.
  796. .. method:: reverse_ordering()
  797. Returns ``self`` with any modifications required to reverse the sort
  798. order within an ``order_by`` call. As an example, an expression
  799. implementing ``NULLS LAST`` would change its value to be
  800. ``NULLS FIRST``. Modifications are only required for expressions that
  801. implement sort order like ``OrderBy``. This method is called when
  802. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  803. queryset.
  804. Writing your own Query Expressions
  805. ----------------------------------
  806. You can write your own query expression classes that use, and can integrate
  807. with, other query expressions. Let's step through an example by writing an
  808. implementation of the ``COALESCE`` SQL function, without using the built-in
  809. :ref:`Func() expressions <func-expressions>`.
  810. The ``COALESCE`` SQL function is defined as taking a list of columns or
  811. values. It will return the first column or value that isn't ``NULL``.
  812. We'll start by defining the template to be used for SQL generation and
  813. an ``__init__()`` method to set some attributes::
  814. import copy
  815. from django.db.models import Expression
  816. class Coalesce(Expression):
  817. template = 'COALESCE( %(expressions)s )'
  818. def __init__(self, expressions, output_field):
  819. super().__init__(output_field=output_field)
  820. if len(expressions) < 2:
  821. raise ValueError('expressions must have at least 2 elements')
  822. for expression in expressions:
  823. if not hasattr(expression, 'resolve_expression'):
  824. raise TypeError('%r is not an Expression' % expression)
  825. self.expressions = expressions
  826. We do some basic validation on the parameters, including requiring at least
  827. 2 columns or values, and ensuring they are expressions. We are requiring
  828. ``output_field`` here so that Django knows what kind of model field to assign
  829. the eventual result to.
  830. Now we implement the preprocessing and validation. Since we do not have
  831. any of our own validation at this point, we delegate to the nested
  832. expressions::
  833. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  834. c = self.copy()
  835. c.is_summary = summarize
  836. for pos, expression in enumerate(self.expressions):
  837. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  838. return c
  839. Next, we write the method responsible for generating the SQL::
  840. def as_sql(self, compiler, connection, template=None):
  841. sql_expressions, sql_params = [], []
  842. for expression in self.expressions:
  843. sql, params = compiler.compile(expression)
  844. sql_expressions.append(sql)
  845. sql_params.extend(params)
  846. template = template or self.template
  847. data = {'expressions': ','.join(sql_expressions)}
  848. return template % data, sql_params
  849. def as_oracle(self, compiler, connection):
  850. """
  851. Example of vendor specific handling (Oracle in this case).
  852. Let's make the function name lowercase.
  853. """
  854. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  855. ``as_sql()`` methods can support custom keyword arguments, allowing
  856. ``as_vendorname()`` methods to override data used to generate the SQL string.
  857. Using ``as_sql()`` keyword arguments for customization is preferable to
  858. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  859. errors when running on different database backends. If your class relies on
  860. class attributes to define data, consider allowing overrides in your
  861. ``as_sql()`` method.
  862. We generate the SQL for each of the ``expressions`` by using the
  863. ``compiler.compile()`` method, and join the result together with commas.
  864. Then the template is filled out with our data and the SQL and parameters
  865. are returned.
  866. We've also defined a custom implementation that is specific to the Oracle
  867. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  868. if the Oracle backend is in use.
  869. Finally, we implement the rest of the methods that allow our query expression
  870. to play nice with other query expressions::
  871. def get_source_expressions(self):
  872. return self.expressions
  873. def set_source_expressions(self, expressions):
  874. self.expressions = expressions
  875. Let's see how it works:
  876. .. code-block:: pycon
  877. >>> from django.db.models import F, Value, CharField
  878. >>> qs = Company.objects.annotate(
  879. ... tagline=Coalesce([
  880. ... F('motto'),
  881. ... F('ticker_name'),
  882. ... F('description'),
  883. ... Value('No Tagline')
  884. ... ], output_field=CharField()))
  885. >>> for c in qs:
  886. ... print("%s: %s" % (c.name, c.tagline))
  887. ...
  888. Google: Do No Evil
  889. Apple: AAPL
  890. Yahoo: Internet Company
  891. Django Software Foundation: No Tagline
  892. .. _avoiding-sql-injection-in-query-expressions:
  893. Avoiding SQL injection
  894. ~~~~~~~~~~~~~~~~~~~~~~
  895. Since a ``Func``'s keyword arguments for ``__init__()`` (``**extra``) and
  896. ``as_sql()`` (``**extra_context``) are interpolated into the SQL string rather
  897. than passed as query parameters (where the database driver would escape them),
  898. they must not contain untrusted user input.
  899. For example, if ``substring`` is user-provided, this function is vulnerable to
  900. SQL injection::
  901. from django.db.models import Func
  902. class Position(Func):
  903. function = 'POSITION'
  904. template = "%(function)s('%(substring)s' in %(expressions)s)"
  905. def __init__(self, expression, substring):
  906. # substring=substring is an SQL injection vulnerability!
  907. super().__init__(expression, substring=substring)
  908. This function generates an SQL string without any parameters. Since
  909. ``substring`` is passed to ``super().__init__()`` as a keyword argument, it's
  910. interpolated into the SQL string before the query is sent to the database.
  911. Here's a corrected rewrite::
  912. class Position(Func):
  913. function = 'POSITION'
  914. arg_joiner = ' IN '
  915. def __init__(self, expression, substring):
  916. super().__init__(substring, expression)
  917. With ``substring`` instead passed as a positional argument, it'll be passed as
  918. a parameter in the database query.
  919. Adding support in third-party database backends
  920. -----------------------------------------------
  921. If you're using a database backend that uses a different SQL syntax for a
  922. certain function, you can add support for it by monkey patching a new method
  923. onto the function's class.
  924. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  925. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  926. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  927. class::
  928. from django.db.models.functions import Length
  929. def sqlserver_length(self, compiler, connection):
  930. return self.as_sql(compiler, connection, function='LEN')
  931. Length.as_sqlserver = sqlserver_length
  932. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  933. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  934. ``sqlserver`` for the backend.
  935. Third-party backends can register their functions in the top level
  936. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  937. file (or package) that is imported from the top level ``__init__.py``.
  938. For user projects wishing to patch the backend that they're using, this code
  939. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.