123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- # coding: utf-8
- from django.db import models
- try:
- sorted
- except NameError:
- from django.utils.itercompat import sorted # For Python 2.3
- class Author(models.Model):
- name = models.CharField(max_length=100)
- age = models.IntegerField()
- friends = models.ManyToManyField('self', blank=True)
- def __unicode__(self):
- return self.name
- class Publisher(models.Model):
- name = models.CharField(max_length=300)
- num_awards = models.IntegerField()
- def __unicode__(self):
- return self.name
- class Book(models.Model):
- isbn = models.CharField(max_length=9)
- name = models.CharField(max_length=300)
- pages = models.IntegerField()
- rating = models.FloatField()
- price = models.DecimalField(decimal_places=2, max_digits=6)
- authors = models.ManyToManyField(Author)
- contact = models.ForeignKey(Author, related_name='book_contact_set')
- publisher = models.ForeignKey(Publisher)
- pubdate = models.DateField()
- def __unicode__(self):
- return self.name
- class Store(models.Model):
- name = models.CharField(max_length=300)
- books = models.ManyToManyField(Book)
- original_opening = models.DateTimeField()
- friday_night_closing = models.TimeField()
- def __unicode__(self):
- return self.name
- class Entries(models.Model):
- EntryID = models.AutoField(primary_key=True, db_column='Entry ID')
- Entry = models.CharField(unique=True, max_length=50)
- Exclude = models.BooleanField()
- class Clues(models.Model):
- ID = models.AutoField(primary_key=True)
- EntryID = models.ForeignKey(Entries, verbose_name='Entry', db_column = 'Entry ID')
- Clue = models.CharField(max_length=150)
- # Tests on 'aggergate'
- # Different backends and numbers.
- __test__ = {'API_TESTS': """
- >>> from django.core import management
- >>> try:
- ... from decimal import Decimal
- ... except:
- ... from django.utils._decimal import Decimal
- >>> from datetime import date
- # Reset the database representation of this app.
- # This will return the database to a clean initial state.
- >>> management.call_command('flush', verbosity=0, interactive=False)
- # Empty Call - request nothing, get nothing.
- >>> Author.objects.all().aggregate()
- {}
- >>> from django.db.models import Avg, Sum, Count, Max, Min
- # Single model aggregation
- #
- # Single aggregate
- # Average age of Authors
- >>> Author.objects.all().aggregate(Avg('age'))
- {'age__avg': 37.4...}
- # Multiple aggregates
- # Average and Sum of Author ages
- >>> Author.objects.all().aggregate(Sum('age'), Avg('age'))
- {'age__sum': 337, 'age__avg': 37.4...}
- # Aggreates interact with filters, and only
- # generate aggregate values for the filtered values
- # Sum of the age of those older than 29 years old
- >>> Author.objects.all().filter(age__gt=29).aggregate(Sum('age'))
- {'age__sum': 254}
- # Depth-1 Joins
- #
- # On Relationships with self
- # Average age of the friends of each author
- >>> Author.objects.all().aggregate(Avg('friends__age'))
- {'friends__age__avg': 34.07...}
- # On ManyToMany Relationships
- #
- # Forward
- # Average age of the Authors of Books with a rating of less than 4.5
- >>> Book.objects.all().filter(rating__lt=4.5).aggregate(Avg('authors__age'))
- {'authors__age__avg': 38.2...}
- # Backward
- # Average rating of the Books whose Author's name contains the letter 'a'
- >>> Author.objects.all().filter(name__contains='a').aggregate(Avg('book__rating'))
- {'book__rating__avg': 4.0}
- # On OneToMany Relationships
- #
- # Forward
- # Sum of the number of awards of each Book's Publisher
- >>> Book.objects.all().aggregate(Sum('publisher__num_awards'))
- {'publisher__num_awards__sum': 30}
- # Backward
- # Sum of the price of every Book that has a Publisher
- >>> Publisher.objects.all().aggregate(Sum('book__price'))
- {'book__price__sum': Decimal("270.27")}
- # Multiple Joins
- #
- # Forward
- >>> Store.objects.all().aggregate(Max('books__authors__age'))
- {'books__authors__age__max': 57}
- # Backward
- # Note that the very long default alias may be truncated
- >>> Author.objects.all().aggregate(Min('book__publisher__num_awards'))
- {'book__publisher__num_award...': 1}
- # Aggregate outputs can also be aliased.
- # Average amazon.com Book rating
- >>> Store.objects.filter(name='Amazon.com').aggregate(amazon_mean=Avg('books__rating'))
- {'amazon_mean': 4.08...}
- # Tests on annotate()
- # An empty annotate call does nothing but return the same QuerySet
- >>> Book.objects.all().annotate().order_by('pk')
- [<Book: The Definitive Guide to Django: Web Development Done Right>, <Book: Sams Teach Yourself Django in 24 Hours>, <Book: Practical Django Projects>, <Book: Python Web Development with Django>, <Book: Artificial Intelligence: A Modern Approach>, <Book: Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp>]
- # Annotate inserts the alias into the model object with the aggregated result
- >>> books = Book.objects.all().annotate(mean_age=Avg('authors__age'))
- >>> books.get(pk=1).name
- u'The Definitive Guide to Django: Web Development Done Right'
- >>> books.get(pk=1).mean_age
- 34.5
- # On ManyToMany Relationships
- # Forward
- # Average age of the Authors of each book with a rating less than 4.5
- >>> books = Book.objects.all().filter(rating__lt=4.5).annotate(Avg('authors__age'))
- >>> sorted([(b.name, b.authors__age__avg) for b in books])
- [(u'Artificial Intelligence: A Modern Approach', 51.5), (u'Practical Django Projects', 29.0), (u'Python Web Development with Django', 30.3...), (u'Sams Teach Yourself Django in 24 Hours', 45.0)]
- # Count the number of authors of each book
- >>> books = Book.objects.annotate(num_authors=Count('authors'))
- >>> sorted([(b.name, b.num_authors) for b in books])
- [(u'Artificial Intelligence: A Modern Approach', 2), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 1), (u'Practical Django Projects', 1), (u'Python Web Development with Django', 3), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 2)]
- # Backward
- # Average rating of the Books whose Author's names contains the letter 'a'
- >>> authors = Author.objects.all().filter(name__contains='a').annotate(Avg('book__rating'))
- >>> sorted([(a.name, a.book__rating__avg) for a in authors])
- [(u'Adrian Holovaty', 4.5), (u'Brad Dayley', 3.0), (u'Jacob Kaplan-Moss', 4.5), (u'James Bennett', 4.0), (u'Paul Bissex', 4.0), (u'Stuart Russell', 4.0)]
- # Count the number of books written by each author
- >>> authors = Author.objects.annotate(num_books=Count('book'))
- >>> sorted([(a.name, a.num_books) for a in authors])
- [(u'Adrian Holovaty', 1), (u'Brad Dayley', 1), (u'Jacob Kaplan-Moss', 1), (u'James Bennett', 1), (u'Jeffrey Forcier', 1), (u'Paul Bissex', 1), (u'Peter Norvig', 2), (u'Stuart Russell', 1), (u'Wesley J. Chun', 1)]
- # On OneToMany Relationships
- # Forward
- # Annotate each book with the number of awards of each Book's Publisher
- >>> books = Book.objects.all().annotate(Sum('publisher__num_awards'))
- >>> sorted([(b.name, b.publisher__num_awards__sum) for b in books])
- [(u'Artificial Intelligence: A Modern Approach', 7), (u'Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 9), (u'Practical Django Projects', 3), (u'Python Web Development with Django', 7), (u'Sams Teach Yourself Django in 24 Hours', 1), (u'The Definitive Guide to Django: Web Development Done Right', 3)]
- # Backward
- # Annotate each publisher with the sum of the price of all books sold
- >>> publishers = Publisher.objects.all().annotate(Sum('book__price'))
- >>> sorted([(p.name, p.book__price__sum) for p in publishers])
- [(u'Apress', Decimal("59.69")), (u"Jonno's House of Books", None), (u'Morgan Kaufmann', Decimal("75.00")), (u'Prentice Hall', Decimal("112.49")), (u'Sams', Decimal("23.09"))]
- # Calls to values() are not commutative over annotate().
- # Calling values on a queryset that has annotations returns the output
- # as a dictionary
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values()
- [{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'contact_id': 1, 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}]
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('pk', 'isbn', 'mean_age')
- [{'pk': 1, 'isbn': u'159059725', 'mean_age': 34.5}]
- # Calling values() with parameters reduces the output
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('name')
- [{'name': u'The Definitive Guide to Django: Web Development Done Right'}]
- # An empty values() call before annotating has the same effect as an
- # empty values() call after annotating
- >>> Book.objects.filter(pk=1).values().annotate(mean_age=Avg('authors__age'))
- [{'rating': 4.5, 'isbn': u'159059725', 'name': u'The Definitive Guide to Django: Web Development Done Right', 'pubdate': datetime.date(2007, 12, 6), 'price': Decimal("30..."), 'contact_id': 1, 'id': 1, 'publisher_id': 1, 'pages': 447, 'mean_age': 34.5}]
- # Calling annotate() on a ValuesQuerySet annotates over the groups of
- # fields to be selected by the ValuesQuerySet.
- # Note that an extra parameter is added to each dictionary. This
- # parameter is a queryset representing the objects that have been
- # grouped to generate the annotation
- >>> Book.objects.all().values('rating').annotate(n_authors=Count('authors__id'), mean_age=Avg('authors__age')).order_by('rating')
- [{'rating': 3.0, 'n_authors': 1, 'mean_age': 45.0}, {'rating': 4.0, 'n_authors': 6, 'mean_age': 37.1...}, {'rating': 4.5, 'n_authors': 2, 'mean_age': 34.5}, {'rating': 5.0, 'n_authors': 1, 'mean_age': 57.0}]
- # If a join doesn't match any objects, an aggregate returns None
- >>> authors = Author.objects.all().annotate(Avg('friends__age')).order_by('id')
- >>> len(authors)
- 9
- >>> sorted([(a.name, a.friends__age__avg) for a in authors])
- [(u'Adrian Holovaty', 32.0), (u'Brad Dayley', None), (u'Jacob Kaplan-Moss', 29.5), (u'James Bennett', 34.0), (u'Jeffrey Forcier', 27.0), (u'Paul Bissex', 31.0), (u'Peter Norvig', 46.0), (u'Stuart Russell', 57.0), (u'Wesley J. Chun', 33.6...)]
- # The Count aggregation function allows an extra parameter: distinct.
- # This restricts the count results to unique items
- >>> Book.objects.all().aggregate(Count('rating'))
- {'rating__count': 6}
- >>> Book.objects.all().aggregate(Count('rating', distinct=True))
- {'rating__count': 4}
- # Retreiving the grouped objects
- # When using Count you can also omit the primary key and refer only to
- # the related field name if you want to count all the related objects
- # and not a specific column
- >>> explicit = list(Author.objects.annotate(Count('book__id')))
- >>> implicit = list(Author.objects.annotate(Count('book')))
- >>> explicit == implicit
- True
- # Ordering is allowed on aggregates
- >>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('oldest', 'rating')
- [{'rating': 4.5, 'oldest': 35}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.0, 'oldest': 57}, {'rating': 5.0, 'oldest': 57}]
- >>> Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('-oldest', '-rating')
- [{'rating': 5.0, 'oldest': 57}, {'rating': 4.0, 'oldest': 57}, {'rating': 3.0, 'oldest': 45}, {'rating': 4.5, 'oldest': 35}]
- # It is possible to aggregate over anotated values
- >>> Book.objects.all().annotate(num_authors=Count('authors__id')).aggregate(Avg('num_authors'))
- {'num_authors__avg': 1.66...}
- # You can filter the results based on the aggregation alias.
- # Lets add a publisher to test the different possibilities for filtering
- >>> p = Publisher(name='Expensive Publisher', num_awards=0)
- >>> p.save()
- >>> Book(name='ExpensiveBook1', pages=1, isbn='111', rating=3.5, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=date(2008,12,1)).save()
- >>> Book(name='ExpensiveBook2', pages=1, isbn='222', rating=4.0, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=date(2008,12,2)).save()
- >>> Book(name='ExpensiveBook3', pages=1, isbn='333', rating=4.5, price=Decimal("35"), publisher=p, contact_id=1, pubdate=date(2008,12,3)).save()
- # Publishers that have:
- # (i) more than one book
- >>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
- [<Publisher: Apress>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
- # (ii) a book that cost less than 40
- >>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).order_by('pk')
- [<Publisher: Apress>, <Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
- # (iii) more than one book and (at least) a book that cost less than 40
- >>> Publisher.objects.annotate(num_books=Count('book__id')).filter(num_books__gt=1, book__price__lt=Decimal("40.0")).order_by('pk')
- [<Publisher: Apress>, <Publisher: Prentice Hall>, <Publisher: Expensive Publisher>]
- # (iv) more than one book that costs less than $40
- >>> Publisher.objects.filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
- [<Publisher: Apress>]
- # Now a bit of testing on the different lookup types
- #
- >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 3]).order_by('pk')
- [<Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Morgan Kaufmann>, <Publisher: Expensive Publisher>]
- >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__range=[1, 2]).order_by('pk')
- [<Publisher: Apress>, <Publisher: Sams>, <Publisher: Prentice Hall>, <Publisher: Morgan Kaufmann>]
- >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__in=[1, 3]).order_by('pk')
- [<Publisher: Sams>, <Publisher: Morgan Kaufmann>, <Publisher: Expensive Publisher>]
- >>> Publisher.objects.annotate(num_books=Count('book')).filter(num_books__isnull=True)
- []
- >>> p.delete()
- # Does Author X have any friends? (or better, how many friends does author X have)
- >> Author.objects.filter(pk=1).aggregate(Count('friends__id'))
- {'friends__id__count': 2.0}
- # Give me a list of all Books with more than 1 authors
- >>> Book.objects.all().annotate(num_authors=Count('authors__name')).filter(num_authors__ge=2).order_by('pk')
- [<Book: The Definitive Guide to Django: Web Development Done Right>, <Book: Artificial Intelligence: A Modern Approach>]
- # Give me a list of all Authors that have no friends
- >>> Author.objects.all().annotate(num_friends=Count('friends__id', distinct=True)).filter(num_friends=0).order_by('pk')
- [<Author: Brad Dayley>]
- # Give me a list of all publishers that have published more than 1 books
- >>> Publisher.objects.all().annotate(num_books=Count('book__id')).filter(num_books__gt=1).order_by('pk')
- [<Publisher: Apress>, <Publisher: Prentice Hall>]
- # Give me a list of all publishers that have published more than 1 books that cost less than 40
- >>> Publisher.objects.all().filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count('book__id')).filter(num_books__gt=1)
- [<Publisher: Apress>]
- # Give me a list of all Books that were written by X and one other author.
- >>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1)
- [<Book: Artificial Intelligence: A Modern Approach>]
- # Give me the average rating of all Books that were written by X and one other author.
- #(Aggregate over objects discovered using membership of the m2m set)
- # Adding an existing author to another book to test it the right way
- >>> a = Author.objects.get(name__contains='Norvig')
- >>> b = Book.objects.get(name__contains='Done Right')
- >>> b.authors.add(a)
- >>> b.save()
- # This should do it
- >>> Book.objects.all().annotate(num_authors=Count('authors__id')).filter(authors__name__contains='Norvig', num_authors__gt=1).aggregate(Avg('rating'))
- {'rating__avg': 4.25}
- >>> b.authors.remove(a)
- # Give me a list of all Authors that have published a book with at least one other person
- # (Filters over a count generated on a related object)
- #
- # Cheating: [a for a in Author.objects.all().annotate(num_coleagues=Count('book__authors__id'), num_books=Count('book__id', distinct=True)) if a.num_coleagues - a.num_books > 0]
- # F-Syntax is required. Will be fixed after F objects are available
- # Tests on fields with non-default table and column names.
- >>> Clues.objects.values('EntryID__Entry').annotate(Appearances=Count('EntryID'), Distinct_Clues=Count('Clue', distinct=True))
- []
- # Aggregates also work on dates, times and datetimes
- >>> Publisher.objects.annotate(earliest_book=Min('book__pubdate')).exclude(earliest_book=None).order_by('earliest_book').values()
- [{'earliest_book': datetime.date(1991, 10, 15), 'num_awards': 9, 'id': 4, 'name': u'Morgan Kaufmann'}, {'earliest_book': datetime.date(1995, 1, 15), 'num_awards': 7, 'id': 3, 'name': u'Prentice Hall'}, {'earliest_book': datetime.date(2007, 12, 6), 'num_awards': 3, 'id': 1, 'name': u'Apress'}, {'earliest_book': datetime.date(2008, 3, 3), 'num_awards': 1, 'id': 2, 'name': u'Sams'}]
- >>> Store.objects.aggregate(Max('friday_night_closing'), Min("original_opening"))
- {'friday_night_closing__max': datetime.time(23, 59, 59), 'original_opening__min': datetime.datetime(1945, 4, 25, 16, 24, 14)}
- # values_list() can also be used
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('pk', 'isbn', 'mean_age')
- [(1, u'159059725', 34.5)]
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('isbn')
- [(u'159059725',)]
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age')
- [(34.5,)]
- >>> Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values_list('mean_age', flat=True)
- [34.5]
- """}
|