managers.txt 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. ========
  2. Managers
  3. ========
  4. .. currentmodule:: django.db.models
  5. .. class:: Manager()
  6. A ``Manager`` is the interface through which database query operations are
  7. provided to Django models. At least one ``Manager`` exists for every model in
  8. a Django application.
  9. The way ``Manager`` classes work is documented in :doc:`/topics/db/queries`;
  10. this document specifically touches on model options that customize ``Manager``
  11. behavior.
  12. .. _manager-names:
  13. Manager names
  14. =============
  15. By default, Django adds a ``Manager`` with the name ``objects`` to every Django
  16. model class. However, if you want to use ``objects`` as a field name, or if you
  17. want to use a name other than ``objects`` for the ``Manager``, you can rename
  18. it on a per-model basis. To rename the ``Manager`` for a given class, define a
  19. class attribute of type ``models.Manager()`` on that model. For example::
  20. from django.db import models
  21. class Person(models.Model):
  22. #...
  23. people = models.Manager()
  24. Using this example model, ``Person.objects`` will generate an
  25. ``AttributeError`` exception, but ``Person.people.all()`` will provide a list
  26. of all ``Person`` objects.
  27. .. _custom-managers:
  28. Custom managers
  29. ===============
  30. You can use a custom ``Manager`` in a particular model by extending the base
  31. ``Manager`` class and instantiating your custom ``Manager`` in your model.
  32. There are two reasons you might want to customize a ``Manager``: to add extra
  33. ``Manager`` methods, and/or to modify the initial ``QuerySet`` the ``Manager``
  34. returns.
  35. Adding extra manager methods
  36. ----------------------------
  37. Adding extra ``Manager`` methods is the preferred way to add "table-level"
  38. functionality to your models. (For "row-level" functionality -- i.e., functions
  39. that act on a single instance of a model object -- use :ref:`Model methods
  40. <model-methods>`, not custom ``Manager`` methods.)
  41. A custom ``Manager`` method can return anything you want. It doesn't have to
  42. return a ``QuerySet``.
  43. For example, this custom ``Manager`` offers a method ``with_counts()``, which
  44. returns a list of all ``OpinionPoll`` objects, each with an extra
  45. ``num_responses`` attribute that is the result of an aggregate query::
  46. from django.db import models
  47. class PollManager(models.Manager):
  48. def with_counts(self):
  49. from django.db import connection
  50. with connection.cursor() as cursor:
  51. cursor.execute("""
  52. SELECT p.id, p.question, p.poll_date, COUNT(*)
  53. FROM polls_opinionpoll p, polls_response r
  54. WHERE p.id = r.poll_id
  55. GROUP BY p.id, p.question, p.poll_date
  56. ORDER BY p.poll_date DESC""")
  57. result_list = []
  58. for row in cursor.fetchall():
  59. p = self.model(id=row[0], question=row[1], poll_date=row[2])
  60. p.num_responses = row[3]
  61. result_list.append(p)
  62. return result_list
  63. class OpinionPoll(models.Model):
  64. question = models.CharField(max_length=200)
  65. poll_date = models.DateField()
  66. objects = PollManager()
  67. class Response(models.Model):
  68. poll = models.ForeignKey(OpinionPoll, on_delete=models.CASCADE)
  69. person_name = models.CharField(max_length=50)
  70. response = models.TextField()
  71. With this example, you'd use ``OpinionPoll.objects.with_counts()`` to return
  72. that list of ``OpinionPoll`` objects with ``num_responses`` attributes.
  73. Another thing to note about this example is that ``Manager`` methods can
  74. access ``self.model`` to get the model class to which they're attached.
  75. Modifying a manager's initial ``QuerySet``
  76. ------------------------------------------
  77. A ``Manager``’s base ``QuerySet`` returns all objects in the system. For
  78. example, using this model::
  79. from django.db import models
  80. class Book(models.Model):
  81. title = models.CharField(max_length=100)
  82. author = models.CharField(max_length=50)
  83. ...the statement ``Book.objects.all()`` will return all books in the database.
  84. You can override a ``Manager``’s base ``QuerySet`` by overriding the
  85. ``Manager.get_queryset()`` method. ``get_queryset()`` should return a
  86. ``QuerySet`` with the properties you require.
  87. For example, the following model has *two* ``Manager``\s -- one that returns
  88. all objects, and one that returns only the books by Roald Dahl::
  89. # First, define the Manager subclass.
  90. class DahlBookManager(models.Manager):
  91. def get_queryset(self):
  92. return super(DahlBookManager, self).get_queryset().filter(author='Roald Dahl')
  93. # Then hook it into the Book model explicitly.
  94. class Book(models.Model):
  95. title = models.CharField(max_length=100)
  96. author = models.CharField(max_length=50)
  97. objects = models.Manager() # The default manager.
  98. dahl_objects = DahlBookManager() # The Dahl-specific manager.
  99. With this sample model, ``Book.objects.all()`` will return all books in the
  100. database, but ``Book.dahl_objects.all()`` will only return the ones written by
  101. Roald Dahl.
  102. Of course, because ``get_queryset()`` returns a ``QuerySet`` object, you can
  103. use ``filter()``, ``exclude()`` and all the other ``QuerySet`` methods on it.
  104. So these statements are all legal::
  105. Book.dahl_objects.all()
  106. Book.dahl_objects.filter(title='Matilda')
  107. Book.dahl_objects.count()
  108. This example also pointed out another interesting technique: using multiple
  109. managers on the same model. You can attach as many ``Manager()`` instances to
  110. a model as you'd like. This is an easy way to define common "filters" for your
  111. models.
  112. For example::
  113. class AuthorManager(models.Manager):
  114. def get_queryset(self):
  115. return super(AuthorManager, self).get_queryset().filter(role='A')
  116. class EditorManager(models.Manager):
  117. def get_queryset(self):
  118. return super(EditorManager, self).get_queryset().filter(role='E')
  119. class Person(models.Model):
  120. first_name = models.CharField(max_length=50)
  121. last_name = models.CharField(max_length=50)
  122. role = models.CharField(max_length=1, choices=(('A', _('Author')), ('E', _('Editor'))))
  123. people = models.Manager()
  124. authors = AuthorManager()
  125. editors = EditorManager()
  126. This example allows you to request ``Person.authors.all()``, ``Person.editors.all()``,
  127. and ``Person.people.all()``, yielding predictable results.
  128. .. _default-managers:
  129. Default managers
  130. ----------------
  131. .. attribute:: Model._default_manager
  132. If you use custom ``Manager`` objects, take note that the first ``Manager``
  133. Django encounters (in the order in which they're defined in the model) has a
  134. special status. Django interprets the first ``Manager`` defined in a class as
  135. the "default" ``Manager``, and several parts of Django (including
  136. :djadmin:`dumpdata`) will use that ``Manager`` exclusively for that model. As a
  137. result, it's a good idea to be careful in your choice of default manager in
  138. order to avoid a situation where overriding ``get_queryset()`` results in an
  139. inability to retrieve objects you'd like to work with.
  140. You can specify a custom default manager using :attr:`Meta.default_manager_name
  141. <django.db.models.Options.default_manager_name>`.
  142. If you're writing some code that must handle an unknown model, for example, in
  143. a third-party app that implements a generic view, use this manager (or
  144. :attr:`~Model._base_manager`) rather than assuming the model has an ``objects``
  145. manager.
  146. Base managers
  147. -------------
  148. .. attribute:: Model._base_manager
  149. .. _managers-for-related-objects:
  150. Using managers for related object access
  151. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  152. By default, Django uses an instance of the ``Model._base_manager`` manager
  153. class when accessing related objects (i.e. ``choice.question``), not the
  154. ``_default_manager`` on the related object. This is because Django needs to be
  155. able to retrieve the related object, even if it would otherwise be filtered out
  156. (and hence be inaccessible) by the default manager.
  157. If the normal base manager class (:class:`django.db.models.Manager`) isn't
  158. appropriate for your circumstances, you can tell Django which class to use by
  159. setting :attr:`Meta.base_manager_name
  160. <django.db.models.Options.base_manager_name>`.
  161. Manager's aren't used when querying on related models. For example, if the
  162. ``Question`` model :ref:`from the tutorial <creating-models>` had a ``deleted``
  163. field and a base manager that filters out instances with ``deleted=True``, a
  164. queryset like ``Choice.objects.filter(question__name__startswith='What')``
  165. would include choices related to deleted questions.
  166. Don't filter away any results in this type of manager subclass
  167. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  168. This manager is used to access objects that are related to from some other
  169. model. In those situations, Django has to be able to see all the objects for
  170. the model it is fetching, so that *anything* which is referred to can be
  171. retrieved.
  172. If you override the ``get_queryset()`` method and filter out any rows, Django
  173. will return incorrect results. Don't do that. A manager that filters results
  174. in ``get_queryset()`` is not appropriate for use as a base manager.
  175. .. _calling-custom-queryset-methods-from-manager:
  176. Calling custom ``QuerySet`` methods from the manager
  177. ----------------------------------------------------
  178. While most methods from the standard ``QuerySet`` are accessible directly from
  179. the ``Manager``, this is only the case for the extra methods defined on a
  180. custom ``QuerySet`` if you also implement them on the ``Manager``::
  181. class PersonQuerySet(models.QuerySet):
  182. def authors(self):
  183. return self.filter(role='A')
  184. def editors(self):
  185. return self.filter(role='E')
  186. class PersonManager(models.Manager):
  187. def get_queryset(self):
  188. return PersonQuerySet(self.model, using=self._db)
  189. def authors(self):
  190. return self.get_queryset().authors()
  191. def editors(self):
  192. return self.get_queryset().editors()
  193. class Person(models.Model):
  194. first_name = models.CharField(max_length=50)
  195. last_name = models.CharField(max_length=50)
  196. role = models.CharField(max_length=1, choices=(('A', _('Author')), ('E', _('Editor'))))
  197. people = PersonManager()
  198. This example allows you to call both ``authors()`` and ``editors()`` directly from
  199. the manager ``Person.people``.
  200. .. _create-manager-with-queryset-methods:
  201. Creating a manager with ``QuerySet`` methods
  202. --------------------------------------------
  203. In lieu of the above approach which requires duplicating methods on both the
  204. ``QuerySet`` and the ``Manager``, :meth:`QuerySet.as_manager()
  205. <django.db.models.query.QuerySet.as_manager>` can be used to create an instance
  206. of ``Manager`` with a copy of a custom ``QuerySet``’s methods::
  207. class Person(models.Model):
  208. ...
  209. people = PersonQuerySet.as_manager()
  210. The ``Manager`` instance created by :meth:`QuerySet.as_manager()
  211. <django.db.models.query.QuerySet.as_manager>` will be virtually
  212. identical to the ``PersonManager`` from the previous example.
  213. Not every ``QuerySet`` method makes sense at the ``Manager`` level; for
  214. instance we intentionally prevent the :meth:`QuerySet.delete()
  215. <django.db.models.query.QuerySet.delete>` method from being copied onto
  216. the ``Manager`` class.
  217. Methods are copied according to the following rules:
  218. - Public methods are copied by default.
  219. - Private methods (starting with an underscore) are not copied by default.
  220. - Methods with a ``queryset_only`` attribute set to ``False`` are always copied.
  221. - Methods with a ``queryset_only`` attribute set to ``True`` are never copied.
  222. For example::
  223. class CustomQuerySet(models.QuerySet):
  224. # Available on both Manager and QuerySet.
  225. def public_method(self):
  226. return
  227. # Available only on QuerySet.
  228. def _private_method(self):
  229. return
  230. # Available only on QuerySet.
  231. def opted_out_public_method(self):
  232. return
  233. opted_out_public_method.queryset_only = True
  234. # Available on both Manager and QuerySet.
  235. def _opted_in_private_method(self):
  236. return
  237. _opted_in_private_method.queryset_only = False
  238. ``from_queryset()``
  239. ~~~~~~~~~~~~~~~~~~~
  240. .. classmethod:: from_queryset(queryset_class)
  241. For advanced usage you might want both a custom ``Manager`` and a custom
  242. ``QuerySet``. You can do that by calling ``Manager.from_queryset()`` which
  243. returns a *subclass* of your base ``Manager`` with a copy of the custom
  244. ``QuerySet`` methods::
  245. class BaseManager(models.Manager):
  246. def manager_only_method(self):
  247. return
  248. class CustomQuerySet(models.QuerySet):
  249. def manager_and_queryset_method(self):
  250. return
  251. class MyModel(models.Model):
  252. objects = BaseManager.from_queryset(CustomQuerySet)()
  253. You may also store the generated class into a variable::
  254. CustomManager = BaseManager.from_queryset(CustomQuerySet)
  255. class MyModel(models.Model):
  256. objects = CustomManager()
  257. .. _custom-managers-and-inheritance:
  258. Custom managers and model inheritance
  259. -------------------------------------
  260. Here's how Django handles custom managers and :ref:`model inheritance
  261. <model-inheritance>`:
  262. #. Managers from base classes are always inherited by the child class,
  263. using Python's normal name resolution order (names on the child
  264. class override all others; then come names on the first parent class,
  265. and so on).
  266. #. If no managers are declared on a model and/or its parents, Django
  267. automatically creates the ``objects`` manager.
  268. #. The default manager on a class is either the one chosen with
  269. :attr:`Meta.default_manager_name
  270. <django.db.models.Options.default_manager_name>`, or the first manager
  271. declared on the model, or the default manager of the first parent model.
  272. .. versionchanged:: 1.10
  273. In older versions, manager inheritance varied depending on the type of
  274. model inheritance (i.e. :ref:`abstract-base-classes`,
  275. :ref:`multi-table-inheritance`, or :ref:`proxy-models`), especially
  276. with regards to electing the default manager.
  277. These rules provide the necessary flexibility if you want to install a
  278. collection of custom managers on a group of models, via an abstract base
  279. class, but still customize the default manager. For example, suppose you have
  280. this base class::
  281. class AbstractBase(models.Model):
  282. # ...
  283. objects = CustomManager()
  284. class Meta:
  285. abstract = True
  286. If you use this directly in a subclass, ``objects`` will be the default
  287. manager if you declare no managers in the base class::
  288. class ChildA(AbstractBase):
  289. # ...
  290. # This class has CustomManager as the default manager.
  291. pass
  292. If you want to inherit from ``AbstractBase``, but provide a different default
  293. manager, you can provide the default manager on the child class::
  294. class ChildB(AbstractBase):
  295. # ...
  296. # An explicit default manager.
  297. default_manager = OtherManager()
  298. Here, ``default_manager`` is the default. The ``objects`` manager is
  299. still available, since it's inherited. It just isn't used as the default.
  300. Finally for this example, suppose you want to add extra managers to the child
  301. class, but still use the default from ``AbstractBase``. You can't add the new
  302. manager directly in the child class, as that would override the default and you would
  303. have to also explicitly include all the managers from the abstract base class.
  304. The solution is to put the extra managers in another base class and introduce
  305. it into the inheritance hierarchy *after* the defaults::
  306. class ExtraManager(models.Model):
  307. extra_manager = OtherManager()
  308. class Meta:
  309. abstract = True
  310. class ChildC(AbstractBase, ExtraManager):
  311. # ...
  312. # Default manager is CustomManager, but OtherManager is
  313. # also available via the "extra_manager" attribute.
  314. pass
  315. Note that while you can *define* a custom manager on the abstract model, you
  316. can't *invoke* any methods using the abstract model. That is::
  317. ClassA.objects.do_something()
  318. is legal, but::
  319. AbstractBase.objects.do_something()
  320. will raise an exception. This is because managers are intended to encapsulate
  321. logic for managing collections of objects. Since you can't have a collection of
  322. abstract objects, it doesn't make sense to be managing them. If you have
  323. functionality that applies to the abstract model, you should put that functionality
  324. in a ``staticmethod`` or ``classmethod`` on the abstract model.
  325. Implementation concerns
  326. -----------------------
  327. Whatever features you add to your custom ``Manager``, it must be
  328. possible to make a shallow copy of a ``Manager`` instance; i.e., the
  329. following code must work::
  330. >>> import copy
  331. >>> manager = MyManager()
  332. >>> my_copy = copy.copy(manager)
  333. Django makes shallow copies of manager objects during certain queries;
  334. if your Manager cannot be copied, those queries will fail.
  335. This won't be an issue for most custom managers. If you are just
  336. adding simple methods to your ``Manager``, it is unlikely that you
  337. will inadvertently make instances of your ``Manager`` uncopyable.
  338. However, if you're overriding ``__getattr__`` or some other private
  339. method of your ``Manager`` object that controls object state, you
  340. should ensure that you don't affect the ability of your ``Manager`` to
  341. be copied.