aggregates.txt 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. =========================================
  2. PostgreSQL specific aggregation functions
  3. =========================================
  4. .. module:: django.contrib.postgres.aggregates
  5. :synopsis: PostgreSQL specific aggregation functions
  6. These functions are available from the ``django.contrib.postgres.aggregates``
  7. module. They are described in more detail in the `PostgreSQL docs
  8. <https://www.postgresql.org/docs/current/functions-aggregate.html>`_.
  9. .. note::
  10. All functions come without default aliases, so you must explicitly provide
  11. one. For example::
  12. >>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
  13. {'arr': [0, 1, 2]}
  14. .. admonition:: Common aggregate options
  15. All aggregates have the :ref:`filter <aggregate-filter>` keyword
  16. argument.
  17. General-purpose aggregation functions
  18. =====================================
  19. ``ArrayAgg``
  20. ------------
  21. .. class:: ArrayAgg(expression, distinct=False, filter=None, ordering=(), **extra)
  22. Returns a list of values, including nulls, concatenated into an array.
  23. .. attribute:: distinct
  24. An optional boolean argument that determines if array values
  25. will be distinct. Defaults to ``False``.
  26. .. attribute:: ordering
  27. An optional string of a field name (with an optional ``"-"`` prefix
  28. which indicates descending order) or an expression (or a tuple or list
  29. of strings and/or expressions) that specifies the ordering of the
  30. elements in the result list.
  31. Examples::
  32. 'some_field'
  33. '-some_field'
  34. from django.db.models import F
  35. F('some_field').desc()
  36. ``BitAnd``
  37. ----------
  38. .. class:: BitAnd(expression, filter=None, **extra)
  39. Returns an ``int`` of the bitwise ``AND`` of all non-null input values, or
  40. ``None`` if all values are null.
  41. ``BitOr``
  42. ---------
  43. .. class:: BitOr(expression, filter=None, **extra)
  44. Returns an ``int`` of the bitwise ``OR`` of all non-null input values, or
  45. ``None`` if all values are null.
  46. ``BoolAnd``
  47. -----------
  48. .. class:: BoolAnd(expression, filter=None, **extra)
  49. Returns ``True``, if all input values are true, ``None`` if all values are
  50. null or if there are no values, otherwise ``False`` .
  51. Usage example::
  52. class Comment(models.Model):
  53. body = models.TextField()
  54. published = models.BooleanField()
  55. rank = models.IntegerField()
  56. >>> from django.db.models import Q
  57. >>> from django.contrib.postgres.aggregates import BoolAnd
  58. >>> Comment.objects.aggregate(booland=BoolAnd('published'))
  59. {'booland': False}
  60. >>> Comment.objects.aggregate(booland=BoolAnd(Q(rank__lt=100)))
  61. {'booland': True}
  62. ``BoolOr``
  63. ----------
  64. .. class:: BoolOr(expression, filter=None, **extra)
  65. Returns ``True`` if at least one input value is true, ``None`` if all
  66. values are null or if there are no values, otherwise ``False``.
  67. Usage example::
  68. class Comment(models.Model):
  69. body = models.TextField()
  70. published = models.BooleanField()
  71. rank = models.IntegerField()
  72. >>> from django.db.models import Q
  73. >>> from django.contrib.postgres.aggregates import BoolOr
  74. >>> Comment.objects.aggregate(boolor=BoolOr('published'))
  75. {'boolor': True}
  76. >>> Comment.objects.aggregate(boolor=BoolOr(Q(rank__gt=2)))
  77. {'boolor': False}
  78. ``JSONBAgg``
  79. ------------
  80. .. class:: JSONBAgg(expressions, filter=None, ordering=(), **extra)
  81. Returns the input values as a ``JSON`` array.
  82. .. attribute:: ordering
  83. .. versionadded:: 3.2
  84. An optional string of a field name (with an optional ``"-"`` prefix
  85. which indicates descending order) or an expression (or a tuple or list
  86. of strings and/or expressions) that specifies the ordering of the
  87. elements in the result list.
  88. Examples are the same as for :attr:`ArrayAgg.ordering`.
  89. ``StringAgg``
  90. -------------
  91. .. class:: StringAgg(expression, delimiter, distinct=False, filter=None, ordering=())
  92. Returns the input values concatenated into a string, separated by
  93. the ``delimiter`` string.
  94. .. attribute:: delimiter
  95. Required argument. Needs to be a string.
  96. .. attribute:: distinct
  97. An optional boolean argument that determines if concatenated values
  98. will be distinct. Defaults to ``False``.
  99. .. attribute:: ordering
  100. An optional string of a field name (with an optional ``"-"`` prefix
  101. which indicates descending order) or an expression (or a tuple or list
  102. of strings and/or expressions) that specifies the ordering of the
  103. elements in the result string.
  104. Examples are the same as for :attr:`ArrayAgg.ordering`.
  105. Aggregate functions for statistics
  106. ==================================
  107. ``y`` and ``x``
  108. ---------------
  109. The arguments ``y`` and ``x`` for all these functions can be the name of a
  110. field or an expression returning a numeric data. Both are required.
  111. ``Corr``
  112. --------
  113. .. class:: Corr(y, x, filter=None)
  114. Returns the correlation coefficient as a ``float``, or ``None`` if there
  115. aren't any matching rows.
  116. ``CovarPop``
  117. ------------
  118. .. class:: CovarPop(y, x, sample=False, filter=None)
  119. Returns the population covariance as a ``float``, or ``None`` if there
  120. aren't any matching rows.
  121. Has one optional argument:
  122. .. attribute:: sample
  123. By default ``CovarPop`` returns the general population covariance.
  124. However, if ``sample=True``, the return value will be the sample
  125. population covariance.
  126. ``RegrAvgX``
  127. ------------
  128. .. class:: RegrAvgX(y, x, filter=None)
  129. Returns the average of the independent variable (``sum(x)/N``) as a
  130. ``float``, or ``None`` if there aren't any matching rows.
  131. ``RegrAvgY``
  132. ------------
  133. .. class:: RegrAvgY(y, x, filter=None)
  134. Returns the average of the dependent variable (``sum(y)/N``) as a
  135. ``float``, or ``None`` if there aren't any matching rows.
  136. ``RegrCount``
  137. -------------
  138. .. class:: RegrCount(y, x, filter=None)
  139. Returns an ``int`` of the number of input rows in which both expressions
  140. are not null.
  141. ``RegrIntercept``
  142. -----------------
  143. .. class:: RegrIntercept(y, x, filter=None)
  144. Returns the y-intercept of the least-squares-fit linear equation determined
  145. by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
  146. matching rows.
  147. ``RegrR2``
  148. ----------
  149. .. class:: RegrR2(y, x, filter=None)
  150. Returns the square of the correlation coefficient as a ``float``, or
  151. ``None`` if there aren't any matching rows.
  152. ``RegrSlope``
  153. -------------
  154. .. class:: RegrSlope(y, x, filter=None)
  155. Returns the slope of the least-squares-fit linear equation determined
  156. by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
  157. matching rows.
  158. ``RegrSXX``
  159. -----------
  160. .. class:: RegrSXX(y, x, filter=None)
  161. Returns ``sum(x^2) - sum(x)^2/N`` ("sum of squares" of the independent
  162. variable) as a ``float``, or ``None`` if there aren't any matching rows.
  163. ``RegrSXY``
  164. -----------
  165. .. class:: RegrSXY(y, x, filter=None)
  166. Returns ``sum(x*y) - sum(x) * sum(y)/N`` ("sum of products" of independent
  167. times dependent variable) as a ``float``, or ``None`` if there aren't any
  168. matching rows.
  169. ``RegrSYY``
  170. -----------
  171. .. class:: RegrSYY(y, x, filter=None)
  172. Returns ``sum(y^2) - sum(y)^2/N`` ("sum of squares" of the dependent
  173. variable) as a ``float``, or ``None`` if there aren't any matching rows.
  174. Usage examples
  175. ==============
  176. We will use this example table::
  177. | FIELD1 | FIELD2 | FIELD3 |
  178. |--------|--------|--------|
  179. | foo | 1 | 13 |
  180. | bar | 2 | (null) |
  181. | test | 3 | 13 |
  182. Here's some examples of some of the general-purpose aggregation functions::
  183. >>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
  184. {'result': 'foo;bar;test'}
  185. >>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
  186. {'result': [1, 2, 3]}
  187. >>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
  188. {'result': ['foo', 'bar', 'test']}
  189. The next example shows the usage of statistical aggregate functions. The
  190. underlying math will be not described (you can read about this, for example, at
  191. `wikipedia <https://en.wikipedia.org/wiki/Regression_analysis>`_)::
  192. >>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
  193. {'count': 2}
  194. >>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
  195. ... avgy=RegrAvgY(y='field3', x='field2'))
  196. {'avgx': 2, 'avgy': 13}