expressions.txt 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. There are a
  7. number of built-in expressions (documented below) that can be used to help you
  8. write queries. Expressions can be combined, or in some cases nested, to form
  9. more complex computations.
  10. Supported arithmetic
  11. ====================
  12. Django supports negation, addition, subtraction, multiplication, division,
  13. modulo arithmetic, and the power operator on query expressions, using Python
  14. constants, variables, and even other expressions.
  15. .. versionchanged:: 2.1
  16. Support for negation was added.
  17. Some examples
  18. =============
  19. .. code-block:: python
  20. from django.db.models import Count, F, Value
  21. from django.db.models.functions import Length, Upper
  22. # Find companies that have more employees than chairs.
  23. Company.objects.filter(num_employees__gt=F('num_chairs'))
  24. # Find companies that have at least twice as many employees
  25. # as chairs. Both the querysets below are equivalent.
  26. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  27. Company.objects.filter(
  28. num_employees__gt=F('num_chairs') + F('num_chairs'))
  29. # How many chairs are needed for each company to seat all employees?
  30. >>> company = Company.objects.filter(
  31. ... num_employees__gt=F('num_chairs')).annotate(
  32. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  33. >>> company.num_employees
  34. 120
  35. >>> company.num_chairs
  36. 50
  37. >>> company.chairs_needed
  38. 70
  39. # Create a new company using expressions.
  40. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  41. # Be sure to refresh it if you need to access the field.
  42. >>> company.refresh_from_db()
  43. >>> company.ticker
  44. 'GOOG'
  45. # Annotate models with an aggregated value. Both forms
  46. # below are equivalent.
  47. Company.objects.annotate(num_products=Count('products'))
  48. Company.objects.annotate(num_products=Count(F('products')))
  49. # Aggregates can contain complex computations also
  50. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  51. # Expressions can also be used in order_by(), either directly
  52. Company.objects.order_by(Length('name').asc())
  53. Company.objects.order_by(Length('name').desc())
  54. # or using the double underscore lookup syntax.
  55. from django.db.models import CharField
  56. from django.db.models.functions import Length
  57. CharField.register_lookup(Length)
  58. Company.objects.order_by('name__length')
  59. Built-in Expressions
  60. ====================
  61. .. note::
  62. These expressions are defined in ``django.db.models.expressions`` and
  63. ``django.db.models.aggregates``, but for convenience they're available and
  64. usually imported from :mod:`django.db.models`.
  65. ``F()`` expressions
  66. -------------------
  67. .. class:: F
  68. An ``F()`` object represents the value of a model field or annotated column. It
  69. makes it possible to refer to model field values and perform database
  70. operations using them without actually having to pull them out of the database
  71. into Python memory.
  72. Instead, Django uses the ``F()`` object to generate an SQL expression that
  73. describes the required operation at the database level.
  74. This is easiest to understand through an example. Normally, one might do
  75. something like this::
  76. # Tintin filed a news story!
  77. reporter = Reporters.objects.get(name='Tintin')
  78. reporter.stories_filed += 1
  79. reporter.save()
  80. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  81. into memory and manipulated it using familiar Python operators, and then saved
  82. the object back to the database. But instead we could also have done::
  83. from django.db.models import F
  84. reporter = Reporters.objects.get(name='Tintin')
  85. reporter.stories_filed = F('stories_filed') + 1
  86. reporter.save()
  87. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  88. normal Python assignment of value to an instance attribute, in fact it's an SQL
  89. construct describing an operation on the database.
  90. When Django encounters an instance of ``F()``, it overrides the standard Python
  91. operators to create an encapsulated SQL expression; in this case, one which
  92. instructs the database to increment the database field represented by
  93. ``reporter.stories_filed``.
  94. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  95. know about it - it is dealt with entirely by the database. All Python does,
  96. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  97. and describe the operation.
  98. To access the new value saved this way, the object must be reloaded::
  99. reporter = Reporters.objects.get(pk=reporter.pk)
  100. # Or, more succinctly:
  101. reporter.refresh_from_db()
  102. As well as being used in operations on single instances as above, ``F()`` can
  103. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  104. the two queries we were using above - the ``get()`` and the
  105. :meth:`~Model.save()` - to just one::
  106. reporter = Reporters.objects.filter(name='Tintin')
  107. reporter.update(stories_filed=F('stories_filed') + 1)
  108. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  109. the field value on multiple objects - which could be very much faster than
  110. pulling them all into Python from the database, looping over them, incrementing
  111. the field value of each one, and saving each one back to the database::
  112. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  113. ``F()`` therefore can offer performance advantages by:
  114. * getting the database, rather than Python, to do work
  115. * reducing the number of queries some operations require
  116. .. _avoiding-race-conditions-using-f:
  117. Avoiding race conditions using ``F()``
  118. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  119. Another useful benefit of ``F()`` is that having the database - rather than
  120. Python - update a field's value avoids a *race condition*.
  121. If two Python threads execute the code in the first example above, one thread
  122. could retrieve, increment, and save a field's value after the other has
  123. retrieved it from the database. The value that the second thread saves will be
  124. based on the original value; the work of the first thread will simply be lost.
  125. If the database is responsible for updating the field, the process is more
  126. robust: it will only ever update the field based on the value of the field in
  127. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  128. than based on its value when the instance was retrieved.
  129. ``F()`` assignments persist after ``Model.save()``
  130. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  131. ``F()`` objects assigned to model fields persist after saving the model
  132. instance and will be applied on each :meth:`~Model.save()`. For example::
  133. reporter = Reporters.objects.get(name='Tintin')
  134. reporter.stories_filed = F('stories_filed') + 1
  135. reporter.save()
  136. reporter.name = 'Tintin Jr.'
  137. reporter.save()
  138. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  139. the final value will be ``3``.
  140. Using ``F()`` in filters
  141. ~~~~~~~~~~~~~~~~~~~~~~~~
  142. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  143. possible to filter a set of objects against criteria based on their field
  144. values, rather than on Python values.
  145. This is documented in :ref:`using F() expressions in queries
  146. <using-f-expressions-in-filters>`.
  147. .. _using-f-with-annotations:
  148. Using ``F()`` with annotations
  149. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  150. ``F()`` can be used to create dynamic fields on your models by combining
  151. different fields with arithmetic::
  152. company = Company.objects.annotate(
  153. chairs_needed=F('num_employees') - F('num_chairs'))
  154. If the fields that you're combining are of different types you'll need
  155. to tell Django what kind of field will be returned. Since ``F()`` does not
  156. directly support ``output_field`` you will need to wrap the expression with
  157. :class:`ExpressionWrapper`::
  158. from django.db.models import DateTimeField, ExpressionWrapper, F
  159. Ticket.objects.annotate(
  160. expires=ExpressionWrapper(
  161. F('active_at') + F('duration'), output_field=DateTimeField()))
  162. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  163. primary key value rather than a model instance::
  164. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  165. >> car.manufacturer
  166. <Manufacturer: Toyota>
  167. >> car.built_by
  168. 3
  169. .. _using-f-to-sort-null-values:
  170. Using ``F()`` to sort null values
  171. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  172. Use ``F()`` and the ``nulls_first`` or ``nulls_last`` keyword argument to
  173. :meth:`.Expression.asc` or :meth:`~.Expression.desc` to control the ordering of
  174. a field's null values. By default, the ordering depends on your database.
  175. For example, to sort companies that haven't been contacted (``last_contacted``
  176. is null) after companies that have been contacted::
  177. from django.db.models import F
  178. Company.object.order_by(F('last_contacted').desc(nulls_last=True))
  179. .. _func-expressions:
  180. ``Func()`` expressions
  181. ----------------------
  182. ``Func()`` expressions are the base type of all expressions that involve
  183. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  184. They can be used directly::
  185. from django.db.models import F, Func
  186. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  187. or they can be used to build a library of database functions::
  188. class Lower(Func):
  189. function = 'LOWER'
  190. queryset.annotate(field_lower=Lower('field'))
  191. But both cases will result in a queryset where each model is annotated with an
  192. extra attribute ``field_lower`` produced, roughly, from the following SQL::
  193. SELECT
  194. ...
  195. LOWER("db_table"."field") as "field_lower"
  196. See :doc:`database-functions` for a list of built-in database functions.
  197. The ``Func`` API is as follows:
  198. .. class:: Func(*expressions, **extra)
  199. .. attribute:: function
  200. A class attribute describing the function that will be generated.
  201. Specifically, the ``function`` will be interpolated as the ``function``
  202. placeholder within :attr:`template`. Defaults to ``None``.
  203. .. attribute:: template
  204. A class attribute, as a format string, that describes the SQL that is
  205. generated for this function. Defaults to
  206. ``'%(function)s(%(expressions)s)'``.
  207. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  208. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  209. ``template`` attribute because the string is interpolated twice: once
  210. during the template interpolation in ``as_sql()`` and once in the SQL
  211. interpolation with the query parameters in the database cursor.
  212. .. attribute:: arg_joiner
  213. A class attribute that denotes the character used to join the list of
  214. ``expressions`` together. Defaults to ``', '``.
  215. .. attribute:: arity
  216. A class attribute that denotes the number of arguments the function
  217. accepts. If this attribute is set and the function is called with a
  218. different number of expressions, ``TypeError`` will be raised. Defaults
  219. to ``None``.
  220. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  221. Generates the SQL for the database function.
  222. The ``as_vendor()`` methods should use the ``function``, ``template``,
  223. ``arg_joiner``, and any other ``**extra_context`` parameters to
  224. customize the SQL as needed. For example:
  225. .. snippet::
  226. :filename: django/db/models/functions.py
  227. class ConcatPair(Func):
  228. ...
  229. function = 'CONCAT'
  230. ...
  231. def as_mysql(self, compiler, connection):
  232. return super().as_sql(
  233. compiler, connection,
  234. function='CONCAT_WS',
  235. template="%(function)s('', %(expressions)s)",
  236. )
  237. To avoid a SQL injection vulnerability, ``extra_context`` :ref:`must
  238. not contain untrusted user input <avoiding-sql-injection-in-query-expressions>`
  239. as these values are interpolated into the SQL string rather than passed
  240. as query parameters, where the database driver would escape them.
  241. The ``*expressions`` argument is a list of positional expressions that the
  242. function will be applied to. The expressions will be converted to strings,
  243. joined together with ``arg_joiner``, and then interpolated into the ``template``
  244. as the ``expressions`` placeholder.
  245. Positional arguments can be expressions or Python values. Strings are
  246. assumed to be column references and will be wrapped in ``F()`` expressions
  247. while other values will be wrapped in ``Value()`` expressions.
  248. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  249. into the ``template`` attribute. To avoid a SQL injection vulnerability,
  250. ``extra`` :ref:`must not contain untrusted user input
  251. <avoiding-sql-injection-in-query-expressions>` as these values are interpolated
  252. into the SQL string rather than passed as query parameters, where the database
  253. driver would escape them.
  254. The ``function``, ``template``, and ``arg_joiner`` keywords can be used to
  255. replace the attributes of the same name without having to define your own
  256. class. ``output_field`` can be used to define the expected return type.
  257. ``Aggregate()`` expressions
  258. ---------------------------
  259. An aggregate expression is a special case of a :ref:`Func() expression
  260. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  261. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  262. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  263. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  264. some complex computations::
  265. from django.db.models import Count
  266. Company.objects.annotate(
  267. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  268. The ``Aggregate`` API is as follows:
  269. .. class:: Aggregate(expression, output_field=None, filter=None, **extra)
  270. .. attribute:: template
  271. A class attribute, as a format string, that describes the SQL that is
  272. generated for this aggregate. Defaults to
  273. ``'%(function)s( %(expressions)s )'``.
  274. .. attribute:: function
  275. A class attribute describing the aggregate function that will be
  276. generated. Specifically, the ``function`` will be interpolated as the
  277. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  278. .. attribute:: window_compatible
  279. Defaults to ``True`` since most aggregate functions can be used as the
  280. source expression in :class:`~django.db.models.expressions.Window`.
  281. The ``expression`` argument can be the name of a field on the model, or another
  282. expression. It will be converted to a string and used as the ``expressions``
  283. placeholder within the ``template``.
  284. The ``output_field`` argument requires a model field instance, like
  285. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  286. after it's retrieved from the database. Usually no arguments are needed when
  287. instantiating the model field as any arguments relating to data validation
  288. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  289. output value.
  290. Note that ``output_field`` is only required when Django is unable to determine
  291. what field type the result should be. Complex expressions that mix field types
  292. should define the desired ``output_field``. For example, adding an
  293. ``IntegerField()`` and a ``FloatField()`` together should probably have
  294. ``output_field=FloatField()`` defined.
  295. The ``filter`` argument takes a :class:`Q object <django.db.models.Q>` that's
  296. used to filter the rows that are aggregated. See :ref:`conditional-aggregation`
  297. and :ref:`filtering-on-annotations` for example usage.
  298. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  299. into the ``template`` attribute.
  300. Creating your own Aggregate Functions
  301. -------------------------------------
  302. Creating your own aggregate is extremely easy. At a minimum, you need
  303. to define ``function``, but you can also completely customize the
  304. SQL that is generated. Here's a brief example::
  305. from django.db.models import Aggregate
  306. class Count(Aggregate):
  307. # supports COUNT(distinct field)
  308. function = 'COUNT'
  309. template = '%(function)s(%(distinct)s%(expressions)s)'
  310. def __init__(self, expression, distinct=False, **extra):
  311. super().__init__(
  312. expression,
  313. distinct='DISTINCT ' if distinct else '',
  314. output_field=IntegerField(),
  315. **extra
  316. )
  317. ``Value()`` expressions
  318. -----------------------
  319. .. class:: Value(value, output_field=None)
  320. A ``Value()`` object represents the smallest possible component of an
  321. expression: a simple value. When you need to represent the value of an integer,
  322. boolean, or string within an expression, you can wrap that value within a
  323. ``Value()``.
  324. You will rarely need to use ``Value()`` directly. When you write the expression
  325. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  326. allowing simple values to be used in more complex expressions. You will need to
  327. use ``Value()`` when you want to pass a string to an expression. Most
  328. expressions interpret a string argument as the name of a field, like
  329. ``Lower('name')``.
  330. The ``value`` argument describes the value to be included in the expression,
  331. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  332. values into their corresponding database type.
  333. The ``output_field`` argument should be a model field instance, like
  334. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  335. after it's retrieved from the database. Usually no arguments are needed when
  336. instantiating the model field as any arguments relating to data validation
  337. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  338. output value.
  339. ``ExpressionWrapper()`` expressions
  340. -----------------------------------
  341. .. class:: ExpressionWrapper(expression, output_field)
  342. ``ExpressionWrapper`` simply surrounds another expression and provides access
  343. to properties, such as ``output_field``, that may not be available on other
  344. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  345. ``F()`` expressions with different types as described in
  346. :ref:`using-f-with-annotations`.
  347. Conditional expressions
  348. -----------------------
  349. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  350. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  351. expressions. For more details see :doc:`conditional-expressions`.
  352. ``Subquery()`` expressions
  353. --------------------------
  354. .. class:: Subquery(queryset, output_field=None)
  355. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  356. expression.
  357. For example, to annotate each post with the email address of the author of the
  358. newest comment on that post::
  359. >>> from django.db.models import OuterRef, Subquery
  360. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  361. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  362. On PostgreSQL, the SQL looks like:
  363. .. code-block:: sql
  364. SELECT "post"."id", (
  365. SELECT U0."email"
  366. FROM "comment" U0
  367. WHERE U0."post_id" = ("post"."id")
  368. ORDER BY U0."created_at" DESC LIMIT 1
  369. ) AS "newest_commenter_email" FROM "post"
  370. .. note::
  371. The examples in this section are designed to show how to force
  372. Django to execute a subquery. In some cases it may be possible to
  373. write an equivalent queryset that performs the same task more
  374. clearly or efficiently.
  375. Referencing columns from the outer queryset
  376. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  377. .. class:: OuterRef(field)
  378. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  379. from the outer query. It acts like an :class:`F` expression except that the
  380. check to see if it refers to a valid field isn't made until the outer queryset
  381. is resolved.
  382. Instances of ``OuterRef`` may be used in conjunction with nested instances
  383. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  384. parent. For example, this queryset would need to be within a nested pair of
  385. ``Subquery`` instances to resolve correctly::
  386. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  387. Limiting a subquery to a single column
  388. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  389. There are times when a single column must be returned from a ``Subquery``, for
  390. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  391. all comments for posts published within the last day::
  392. >>> from datetime import timedelta
  393. >>> from django.utils import timezone
  394. >>> one_day_ago = timezone.now() - timedelta(days=1)
  395. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  396. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  397. In this case, the subquery must use :meth:`~.QuerySet.values`
  398. to return only a single column: the primary key of the post.
  399. Limiting the subquery to a single row
  400. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  401. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  402. queryset is used::
  403. >>> subquery = Subquery(newest.values('email')[:1])
  404. >>> Post.objects.annotate(newest_commenter_email=subquery)
  405. In this case, the subquery must only return a single column *and* a single
  406. row: the email address of the most recently created comment.
  407. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  408. ``OuterRef`` cannot be resolved until the queryset is used within a
  409. ``Subquery``.)
  410. ``Exists()`` subqueries
  411. ~~~~~~~~~~~~~~~~~~~~~~~
  412. .. class:: Exists(queryset)
  413. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  414. many cases it will perform better than a subquery since the database is able to
  415. stop evaluation of the subquery when a first matching row is found.
  416. For example, to annotate each post with whether or not it has a comment from
  417. within the last day::
  418. >>> from django.db.models import Exists, OuterRef
  419. >>> from datetime import timedelta
  420. >>> from django.utils import timezone
  421. >>> one_day_ago = timezone.now() - timedelta(days=1)
  422. >>> recent_comments = Comment.objects.filter(
  423. ... post=OuterRef('pk'),
  424. ... created_at__gte=one_day_ago,
  425. ... )
  426. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  427. On PostgreSQL, the SQL looks like:
  428. .. code-block:: sql
  429. SELECT "post"."id", "post"."published_at", EXISTS(
  430. SELECT U0."id", U0."post_id", U0."email", U0."created_at"
  431. FROM "comment" U0
  432. WHERE (
  433. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  434. U0."post_id" = ("post"."id")
  435. )
  436. ) AS "recent_comment" FROM "post"
  437. It's unnecessary to force ``Exists`` to refer to a single column, since the
  438. columns are discarded and a boolean result is returned. Similarly, since
  439. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  440. degrade performance, it's automatically removed.
  441. You can query using ``NOT EXISTS`` with ``~Exists()``.
  442. Filtering on a ``Subquery`` expression
  443. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  444. It's not possible to filter directly using ``Subquery`` and ``Exists``, e.g.::
  445. >>> Post.objects.filter(Exists(recent_comments))
  446. ...
  447. TypeError: 'Exists' object is not iterable
  448. You must filter on a subquery expression by first annotating the queryset
  449. and then filtering based on that annotation::
  450. >>> Post.objects.annotate(
  451. ... recent_comment=Exists(recent_comments),
  452. ... ).filter(recent_comment=True)
  453. Using aggregates within a ``Subquery`` expression
  454. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  455. Aggregates may be used within a ``Subquery``, but they require a specific
  456. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  457. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  458. Assuming both models have a ``length`` field, to find posts where the post
  459. length is greater than the total length of all combined comments::
  460. >>> from django.db.models import OuterRef, Subquery, Sum
  461. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  462. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  463. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  464. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  465. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  466. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  467. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  468. which these queryset methods are applied is important. In this case, since the
  469. subquery must be limited to a single column, ``values('total')`` is required.
  470. This is the only way to perform an aggregation within a ``Subquery``, as
  471. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  472. there is an ``OuterRef``, this will not be possible to resolve).
  473. Raw SQL expressions
  474. -------------------
  475. .. currentmodule:: django.db.models.expressions
  476. .. class:: RawSQL(sql, params, output_field=None)
  477. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  478. In these edge cases, use the ``RawSQL`` expression. For example::
  479. >>> from django.db.models.expressions import RawSQL
  480. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
  481. These extra lookups may not be portable to different database engines (because
  482. you're explicitly writing SQL code) and violate the DRY principle, so you
  483. should avoid them if possible.
  484. .. warning::
  485. To protect against `SQL injection attacks
  486. <https://en.wikipedia.org/wiki/SQL_injection>`_, you must escape any
  487. parameters that the user can control by using ``params``. ``params`` is a
  488. required argument to force you to acknowledge that you're not interpolating
  489. your SQL with user-provided data.
  490. You also must not quote placeholders in the SQL string. This example is
  491. vulnerable to SQL injection because of the quotes around ``%s``::
  492. RawSQL("select col from sometable where othercol = '%s'") # unsafe!
  493. You can read more about how Django's :ref:`SQL injection protection
  494. <sql-injection-protection>` works.
  495. Window functions
  496. ----------------
  497. Window functions provide a way to apply functions on partitions. Unlike a
  498. normal aggregation function which computes a final result for each set defined
  499. by the group by, window functions operate on :ref:`frames <window-frames>` and
  500. partitions, and compute the result for each row.
  501. You can specify multiple windows in the same query which in Django ORM would be
  502. equivalent to including multiple expressions in a :doc:`QuerySet.annotate()
  503. </topics/db/aggregation>` call. The ORM doesn't make use of named windows,
  504. instead they are part of the selected columns.
  505. .. class:: Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)
  506. .. attribute:: filterable
  507. Defaults to ``False``. The SQL standard disallows referencing window
  508. functions in the ``WHERE`` clause and Django raises an exception when
  509. constructing a ``QuerySet`` that would do that.
  510. .. attribute:: template
  511. Defaults to ``%(expression)s OVER (%(window)s)'``. If only the
  512. ``expression`` argument is provided, the window clause will be blank.
  513. The ``Window`` class is the main expression for an ``OVER`` clause.
  514. The ``expression`` argument is either a :ref:`window function
  515. <window-functions>`, an :ref:`aggregate function <aggregation-functions>`, or
  516. an expression that's compatible in a window clause.
  517. The ``partition_by`` argument is a list of expressions (column names should be
  518. wrapped in an ``F``-object) that control the partitioning of the rows.
  519. Partitioning narrows which rows are used to compute the result set.
  520. The ``output_field`` is specified either as an argument or by the expression.
  521. The ``order_by`` argument accepts a sequence of expressions on which you can
  522. call :meth:`~django.db.models.Expression.asc` and
  523. :meth:`~django.db.models.Expression.desc`. The ordering controls the order in
  524. which the expression is applied. For example, if you sum over the rows in a
  525. partition, the first result is just the value of the first row, the second is
  526. the sum of first and second row.
  527. The ``frame`` parameter specifies which other rows that should be used in the
  528. computation. See :ref:`window-frames` for details.
  529. For example, to annotate each movie with the average rating for the movies by
  530. the same studio in the same genre and release year::
  531. >>> from django.db.models import Avg, F, Window
  532. >>> from django.db.models.functions import ExtractYear
  533. >>> Movie.objects.annotate(
  534. >>> avg_rating=Window(
  535. >>> expression=Avg('rating'),
  536. >>> partition_by=[F('studio'), F('genre')],
  537. >>> order_by=ExtractYear('released').asc(),
  538. >>> ),
  539. >>> )
  540. This makes it easy to check if a movie is rated better or worse than its peers.
  541. You may want to apply multiple expressions over the same window, i.e., the
  542. same partition and frame. For example, you could modify the previous example
  543. to also include the best and worst rating in each movie's group (same studio,
  544. genre, and release year) by using three window functions in the same query. The
  545. partition and ordering from the previous example is extracted into a dictionary
  546. to reduce repetition::
  547. >>> from django.db.models import Avg, F, Max, Min, Window
  548. >>> from django.db.models.functions import ExtractYear
  549. >>> window = {
  550. >>> 'partition_by': [F('studio'), F('genre')],
  551. >>> 'order_by': ExtractYear('released').asc(),
  552. >>> }
  553. >>> Movie.objects.annotate(
  554. >>> avg_rating=Window(
  555. >>> expression=Avg('rating'), **window,
  556. >>> ),
  557. >>> best=Window(
  558. >>> expression=Max('rating'), **window,
  559. >>> ),
  560. >>> worst=Window(
  561. >>> expression=Min('rating'), **window,
  562. >>> ),
  563. >>> )
  564. Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
  565. support window expressions. Support for different window expression features
  566. varies among the different databases. For example, the options in
  567. :meth:`~django.db.models.Expression.asc` and
  568. :meth:`~django.db.models.Expression.desc` may not be supported. Consult the
  569. documentation for your database as needed.
  570. .. _window-frames:
  571. Frames
  572. ~~~~~~
  573. For a window frame, you can choose either a range-based sequence of rows or an
  574. ordinary sequence of rows.
  575. .. class:: ValueRange(start=None, end=None)
  576. .. attribute:: frame_type
  577. This attribute is set to ``'RANGE'``.
  578. PostgreSQL has limited support for ``ValueRange`` and only supports use of
  579. the standard start and end points, such as ``CURRENT ROW`` and ``UNBOUNDED
  580. FOLLOWING``.
  581. .. class:: RowRange(start=None, end=None)
  582. .. attribute:: frame_type
  583. This attribute is set to ``'ROWS'``.
  584. Both classes return SQL with the template::
  585. %(frame_type)s BETWEEN %(start)s AND %(end)s
  586. Frames narrow the rows that are used for computing the result. They shift from
  587. some start point to some specified end point. Frames can be used with and
  588. without partitions, but it's often a good idea to specify an ordering of the
  589. window to ensure a deterministic result. In a frame, a peer in a frame is a row
  590. with an equivalent value, or all rows if an ordering clause isn't present.
  591. The default starting point for a frame is ``UNBOUNDED PRECEDING`` which is the
  592. first row of the partition. The end point is always explicitly included in the
  593. SQL generated by the ORM and is by default ``UNBOUNDED FOLLOWING``. The default
  594. frame includes all rows from the partition to the last row in the set.
  595. The accepted values for the ``start`` and ``end`` arguments are ``None``, an
  596. integer, or zero. A negative integer for ``start`` results in ``N preceding``,
  597. while ``None`` yields ``UNBOUNDED PRECEDING``. For both ``start`` and ``end``,
  598. zero will return ``CURRENT ROW``. Positive integers are accepted for ``end``.
  599. There's a difference in what ``CURRENT ROW`` includes. When specified in
  600. ``ROWS`` mode, the frame starts or ends with the current row. When specified in
  601. ``RANGE`` mode, the frame starts or ends at the first or last peer according to
  602. the ordering clause. Thus, ``RANGE CURRENT ROW`` evaluates the expression for
  603. rows which have the same value specified by the ordering. Because the template
  604. includes both the ``start`` and ``end`` points, this may be expressed with::
  605. ValueRange(start=0, end=0)
  606. If a movie's "peers" are described as movies released by the same studio in the
  607. same genre in the same year, this ``RowRange`` example annotates each movie
  608. with the average rating of a movie's two prior and two following peers::
  609. >>> from django.db.models import Avg, F, RowRange, Window
  610. >>> from django.db.models.functions import ExtractYear
  611. >>> Movie.objects.annotate(
  612. >>> avg_rating=Window(
  613. >>> expression=Avg('rating'),
  614. >>> partition_by=[F('studio'), F('genre')],
  615. >>> order_by=ExtractYear('released').asc(),
  616. >>> frame=RowRange(start=-2, end=2),
  617. >>> ),
  618. >>> )
  619. If the database supports it, you can specify the start and end points based on
  620. values of an expression in the partition. If the ``released`` field of the
  621. ``Movie`` model stores the release month of each movies, this ``ValueRange``
  622. example annotates each movie with the average rating of a movie's peers
  623. released between twelve months before and twelve months after the each movie.
  624. >>> from django.db.models import Avg, ExpressionList, F, ValueRange, Window
  625. >>> Movie.objects.annotate(
  626. >>> avg_rating=Window(
  627. >>> expression=Avg('rating'),
  628. >>> partition_by=[F('studio'), F('genre')],
  629. >>> order_by=F('released').asc(),
  630. >>> frame=ValueRange(start=-12, end=12),
  631. >>> ),
  632. >>> )
  633. .. currentmodule:: django.db.models
  634. Technical Information
  635. =====================
  636. Below you'll find technical implementation details that may be useful to
  637. library authors. The technical API and examples below will help with
  638. creating generic query expressions that can extend the built-in functionality
  639. that Django provides.
  640. Expression API
  641. --------------
  642. Query expressions implement the :ref:`query expression API <query-expression>`,
  643. but also expose a number of extra methods and attributes listed below. All
  644. query expressions must inherit from ``Expression()`` or a relevant
  645. subclass.
  646. When a query expression wraps another expression, it is responsible for
  647. calling the appropriate methods on the wrapped expression.
  648. .. class:: Expression
  649. .. attribute:: contains_aggregate
  650. Tells Django that this expression contains an aggregate and that a
  651. ``GROUP BY`` clause needs to be added to the query.
  652. .. attribute:: contains_over_clause
  653. Tells Django that this expression contains a
  654. :class:`~django.db.models.expressions.Window` expression. It's used,
  655. for example, to disallow window function expressions in queries that
  656. modify data. Defaults to ``True``.
  657. .. attribute:: filterable
  658. Tells Django that this expression can be referenced in
  659. :meth:`.QuerySet.filter`. Defaults to ``True``.
  660. .. attribute:: window_compatible
  661. Tells Django that this expression can be used as the source expression
  662. in :class:`~django.db.models.expressions.Window`. Defaults to
  663. ``False``.
  664. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  665. Provides the chance to do any pre-processing or validation of
  666. the expression before it's added to the query. ``resolve_expression()``
  667. must also be called on any nested expressions. A ``copy()`` of ``self``
  668. should be returned with any necessary transformations.
  669. ``query`` is the backend query implementation.
  670. ``allow_joins`` is a boolean that allows or denies the use of
  671. joins in the query.
  672. ``reuse`` is a set of reusable joins for multi-join scenarios.
  673. ``summarize`` is a boolean that, when ``True``, signals that the
  674. query being computed is a terminal aggregate query.
  675. .. method:: get_source_expressions()
  676. Returns an ordered list of inner expressions. For example::
  677. >>> Sum(F('foo')).get_source_expressions()
  678. [F('foo')]
  679. .. method:: set_source_expressions(expressions)
  680. Takes a list of expressions and stores them such that
  681. ``get_source_expressions()`` can return them.
  682. .. method:: relabeled_clone(change_map)
  683. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  684. Column aliases are renamed when subqueries are created.
  685. ``relabeled_clone()`` should also be called on any nested expressions
  686. and assigned to the clone.
  687. ``change_map`` is a dictionary mapping old aliases to new aliases.
  688. Example::
  689. def relabeled_clone(self, change_map):
  690. clone = copy.copy(self)
  691. clone.expression = self.expression.relabeled_clone(change_map)
  692. return clone
  693. .. method:: convert_value(value, expression, connection)
  694. A hook allowing the expression to coerce ``value`` into a more
  695. appropriate type.
  696. .. method:: get_group_by_cols()
  697. Responsible for returning the list of columns references by
  698. this expression. ``get_group_by_cols()`` should be called on any
  699. nested expressions. ``F()`` objects, in particular, hold a reference
  700. to a column.
  701. .. method:: asc(nulls_first=False, nulls_last=False)
  702. Returns the expression ready to be sorted in ascending order.
  703. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  704. See :ref:`using-f-to-sort-null-values` for example usage.
  705. .. method:: desc(nulls_first=False, nulls_last=False)
  706. Returns the expression ready to be sorted in descending order.
  707. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  708. See :ref:`using-f-to-sort-null-values` for example usage.
  709. .. method:: reverse_ordering()
  710. Returns ``self`` with any modifications required to reverse the sort
  711. order within an ``order_by`` call. As an example, an expression
  712. implementing ``NULLS LAST`` would change its value to be
  713. ``NULLS FIRST``. Modifications are only required for expressions that
  714. implement sort order like ``OrderBy``. This method is called when
  715. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  716. queryset.
  717. Writing your own Query Expressions
  718. ----------------------------------
  719. You can write your own query expression classes that use, and can integrate
  720. with, other query expressions. Let's step through an example by writing an
  721. implementation of the ``COALESCE`` SQL function, without using the built-in
  722. :ref:`Func() expressions <func-expressions>`.
  723. The ``COALESCE`` SQL function is defined as taking a list of columns or
  724. values. It will return the first column or value that isn't ``NULL``.
  725. We'll start by defining the template to be used for SQL generation and
  726. an ``__init__()`` method to set some attributes::
  727. import copy
  728. from django.db.models import Expression
  729. class Coalesce(Expression):
  730. template = 'COALESCE( %(expressions)s )'
  731. def __init__(self, expressions, output_field):
  732. super().__init__(output_field=output_field)
  733. if len(expressions) < 2:
  734. raise ValueError('expressions must have at least 2 elements')
  735. for expression in expressions:
  736. if not hasattr(expression, 'resolve_expression'):
  737. raise TypeError('%r is not an Expression' % expression)
  738. self.expressions = expressions
  739. We do some basic validation on the parameters, including requiring at least
  740. 2 columns or values, and ensuring they are expressions. We are requiring
  741. ``output_field`` here so that Django knows what kind of model field to assign
  742. the eventual result to.
  743. Now we implement the pre-processing and validation. Since we do not have
  744. any of our own validation at this point, we just delegate to the nested
  745. expressions::
  746. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  747. c = self.copy()
  748. c.is_summary = summarize
  749. for pos, expression in enumerate(self.expressions):
  750. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  751. return c
  752. Next, we write the method responsible for generating the SQL::
  753. def as_sql(self, compiler, connection, template=None):
  754. sql_expressions, sql_params = [], []
  755. for expression in self.expressions:
  756. sql, params = compiler.compile(expression)
  757. sql_expressions.append(sql)
  758. sql_params.extend(params)
  759. template = template or self.template
  760. data = {'expressions': ','.join(sql_expressions)}
  761. return template % data, params
  762. def as_oracle(self, compiler, connection):
  763. """
  764. Example of vendor specific handling (Oracle in this case).
  765. Let's make the function name lowercase.
  766. """
  767. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  768. ``as_sql()`` methods can support custom keyword arguments, allowing
  769. ``as_vendorname()`` methods to override data used to generate the SQL string.
  770. Using ``as_sql()`` keyword arguments for customization is preferable to
  771. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  772. errors when running on different database backends. If your class relies on
  773. class attributes to define data, consider allowing overrides in your
  774. ``as_sql()`` method.
  775. We generate the SQL for each of the ``expressions`` by using the
  776. ``compiler.compile()`` method, and join the result together with commas.
  777. Then the template is filled out with our data and the SQL and parameters
  778. are returned.
  779. We've also defined a custom implementation that is specific to the Oracle
  780. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  781. if the Oracle backend is in use.
  782. Finally, we implement the rest of the methods that allow our query expression
  783. to play nice with other query expressions::
  784. def get_source_expressions(self):
  785. return self.expressions
  786. def set_source_expressions(self, expressions):
  787. self.expressions = expressions
  788. Let's see how it works::
  789. >>> from django.db.models import F, Value, CharField
  790. >>> qs = Company.objects.annotate(
  791. ... tagline=Coalesce([
  792. ... F('motto'),
  793. ... F('ticker_name'),
  794. ... F('description'),
  795. ... Value('No Tagline')
  796. ... ], output_field=CharField()))
  797. >>> for c in qs:
  798. ... print("%s: %s" % (c.name, c.tagline))
  799. ...
  800. Google: Do No Evil
  801. Apple: AAPL
  802. Yahoo: Internet Company
  803. Django Software Foundation: No Tagline
  804. .. _avoiding-sql-injection-in-query-expressions:
  805. Avoiding SQL injection
  806. ~~~~~~~~~~~~~~~~~~~~~~
  807. Since a ``Func``'s keyword arguments for ``__init__()`` (``**extra``) and
  808. ``as_sql()`` (``**extra_context``) are interpolated into the SQL string rather
  809. than passed as query parameters (where the database driver would escape them),
  810. they must not contain untrusted user input.
  811. For example, if ``substring`` is user-provided, this function is vulnerable to
  812. SQL injection::
  813. from django.db.models import Func
  814. class Position(Func):
  815. function = 'POSITION'
  816. template = "%(function)s('%(substring)s' in %(expressions)s)"
  817. def __init__(self, expression, substring):
  818. # substring=substring is a SQL injection vulnerability!
  819. super().__init__(expression, substring=substring)
  820. This function generates a SQL string without any parameters. Since ``substring``
  821. is passed to ``super().__init__()`` as a keyword argument, it's interpolated
  822. into the SQL string before the query is sent to the database.
  823. Here's a corrected rewrite::
  824. class Position(Func):
  825. function = 'POSITION'
  826. arg_joiner = ' IN '
  827. def __init__(self, expression, substring):
  828. super().__init__(substring, expression)
  829. With ``substring`` instead passed as a positional argument, it'll be passed as
  830. a parameter in the database query.
  831. Adding support in third-party database backends
  832. -----------------------------------------------
  833. If you're using a database backend that uses a different SQL syntax for a
  834. certain function, you can add support for it by monkey patching a new method
  835. onto the function's class.
  836. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  837. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  838. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  839. class::
  840. from django.db.models.functions import Length
  841. def sqlserver_length(self, compiler, connection):
  842. return self.as_sql(compiler, connection, function='LEN')
  843. Length.as_sqlserver = sqlserver_length
  844. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  845. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  846. ``sqlserver`` for the backend.
  847. Third-party backends can register their functions in the top level
  848. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  849. file (or package) that is imported from the top level ``__init__.py``.
  850. For user projects wishing to patch the backend that they're using, this code
  851. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.