2
0

fields.txt 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. ================================
  2. PostgreSQL specific model fields
  3. ================================
  4. All of these fields are available from the ``django.contrib.postgres.fields``
  5. module.
  6. .. currentmodule:: django.contrib.postgres.fields
  7. Indexing these fields
  8. =====================
  9. :class:`~django.db.models.Index` and :attr:`.Field.db_index` both create a
  10. B-tree index, which isn't particularly helpful when querying complex data types.
  11. Indexes such as :class:`~django.contrib.postgres.indexes.GinIndex` and
  12. :class:`~django.contrib.postgres.indexes.GistIndex` are better suited, though
  13. the index choice is dependent on the queries that you're using. Generally, GiST
  14. may be a good choice for the :ref:`range fields <range-fields>` and
  15. :class:`HStoreField`, and GIN may be helpful for :class:`ArrayField`.
  16. ``ArrayField``
  17. ==============
  18. .. class:: ArrayField(base_field, size=None, **options)
  19. A field for storing lists of data. Most field types can be used, and you
  20. pass another field instance as the :attr:`base_field
  21. <ArrayField.base_field>`. You may also specify a :attr:`size
  22. <ArrayField.size>`. ``ArrayField`` can be nested to store multi-dimensional
  23. arrays.
  24. If you give the field a :attr:`~django.db.models.Field.default`, ensure
  25. it's a callable such as ``list`` (for an empty default) or a callable that
  26. returns a list (such as a function). Incorrectly using ``default=[]``
  27. creates a mutable default that is shared between all instances of
  28. ``ArrayField``.
  29. .. attribute:: base_field
  30. This is a required argument.
  31. Specifies the underlying data type and behavior for the array. It
  32. should be an instance of a subclass of
  33. :class:`~django.db.models.Field`. For example, it could be an
  34. :class:`~django.db.models.IntegerField` or a
  35. :class:`~django.db.models.CharField`. Most field types are permitted,
  36. with the exception of those handling relational data
  37. (:class:`~django.db.models.ForeignKey`,
  38. :class:`~django.db.models.OneToOneField` and
  39. :class:`~django.db.models.ManyToManyField`) and file fields (
  40. :class:`~django.db.models.FileField` and
  41. :class:`~django.db.models.ImageField`).
  42. It is possible to nest array fields - you can specify an instance of
  43. ``ArrayField`` as the ``base_field``. For example::
  44. from django.contrib.postgres.fields import ArrayField
  45. from django.db import models
  46. class ChessBoard(models.Model):
  47. board = ArrayField(
  48. ArrayField(
  49. models.CharField(max_length=10, blank=True),
  50. size=8,
  51. ),
  52. size=8,
  53. )
  54. Transformation of values between the database and the model, validation
  55. of data and configuration, and serialization are all delegated to the
  56. underlying base field.
  57. .. attribute:: size
  58. This is an optional argument.
  59. If passed, the array will have a maximum size as specified. This will
  60. be passed to the database, although PostgreSQL at present does not
  61. enforce the restriction.
  62. .. note::
  63. When nesting ``ArrayField``, whether you use the ``size`` parameter or not,
  64. PostgreSQL requires that the arrays are rectangular::
  65. from django.contrib.postgres.fields import ArrayField
  66. from django.db import models
  67. class Board(models.Model):
  68. pieces = ArrayField(ArrayField(models.IntegerField()))
  69. # Valid
  70. Board(
  71. pieces=[
  72. [2, 3],
  73. [2, 1],
  74. ]
  75. )
  76. # Not valid
  77. Board(
  78. pieces=[
  79. [2, 3],
  80. [2],
  81. ]
  82. )
  83. If irregular shapes are required, then the underlying field should be made
  84. nullable and the values padded with ``None``.
  85. Querying ``ArrayField``
  86. -----------------------
  87. There are a number of custom lookups and transforms for :class:`ArrayField`.
  88. We will use the following example model::
  89. from django.contrib.postgres.fields import ArrayField
  90. from django.db import models
  91. class Post(models.Model):
  92. name = models.CharField(max_length=200)
  93. tags = ArrayField(models.CharField(max_length=200), blank=True)
  94. def __str__(self):
  95. return self.name
  96. .. fieldlookup:: arrayfield.contains
  97. ``contains``
  98. ~~~~~~~~~~~~
  99. The :lookup:`contains` lookup is overridden on :class:`ArrayField`. The
  100. returned objects will be those where the values passed are a subset of the
  101. data. It uses the SQL operator ``@>``. For example:
  102. .. code-block:: pycon
  103. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  104. >>> Post.objects.create(name="Second post", tags=["thoughts"])
  105. >>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
  106. >>> Post.objects.filter(tags__contains=["thoughts"])
  107. <QuerySet [<Post: First post>, <Post: Second post>]>
  108. >>> Post.objects.filter(tags__contains=["django"])
  109. <QuerySet [<Post: First post>, <Post: Third post>]>
  110. >>> Post.objects.filter(tags__contains=["django", "thoughts"])
  111. <QuerySet [<Post: First post>]>
  112. .. fieldlookup:: arrayfield.contained_by
  113. ``contained_by``
  114. ~~~~~~~~~~~~~~~~
  115. This is the inverse of the :lookup:`contains <arrayfield.contains>` lookup -
  116. the objects returned will be those where the data is a subset of the values
  117. passed. It uses the SQL operator ``<@``. For example:
  118. .. code-block:: pycon
  119. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  120. >>> Post.objects.create(name="Second post", tags=["thoughts"])
  121. >>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
  122. >>> Post.objects.filter(tags__contained_by=["thoughts", "django"])
  123. <QuerySet [<Post: First post>, <Post: Second post>]>
  124. >>> Post.objects.filter(tags__contained_by=["thoughts", "django", "tutorial"])
  125. <QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
  126. .. fieldlookup:: arrayfield.overlap
  127. ``overlap``
  128. ~~~~~~~~~~~
  129. Returns objects where the data shares any results with the values passed. Uses
  130. the SQL operator ``&&``. For example:
  131. .. code-block:: pycon
  132. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  133. >>> Post.objects.create(name="Second post", tags=["thoughts", "tutorial"])
  134. >>> Post.objects.create(name="Third post", tags=["tutorial", "django"])
  135. >>> Post.objects.filter(tags__overlap=["thoughts"])
  136. <QuerySet [<Post: First post>, <Post: Second post>]>
  137. >>> Post.objects.filter(tags__overlap=["thoughts", "tutorial"])
  138. <QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
  139. >>> Post.objects.filter(tags__overlap=Post.objects.values_list("tags"))
  140. <QuerySet [<Post: First post>, <Post: Second post>, <Post: Third post>]>
  141. .. fieldlookup:: arrayfield.len
  142. ``len``
  143. ~~~~~~~
  144. Returns the length of the array. The lookups available afterward are those
  145. available for :class:`~django.db.models.IntegerField`. For example:
  146. .. code-block:: pycon
  147. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  148. >>> Post.objects.create(name="Second post", tags=["thoughts"])
  149. >>> Post.objects.filter(tags__len=1)
  150. <QuerySet [<Post: Second post>]>
  151. .. fieldlookup:: arrayfield.index
  152. Index transforms
  153. ~~~~~~~~~~~~~~~~
  154. Index transforms index into the array. Any non-negative integer can be used.
  155. There are no errors if it exceeds the :attr:`size <ArrayField.size>` of the
  156. array. The lookups available after the transform are those from the
  157. :attr:`base_field <ArrayField.base_field>`. For example:
  158. .. code-block:: pycon
  159. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  160. >>> Post.objects.create(name="Second post", tags=["thoughts"])
  161. >>> Post.objects.filter(tags__0="thoughts")
  162. <QuerySet [<Post: First post>, <Post: Second post>]>
  163. >>> Post.objects.filter(tags__1__iexact="Django")
  164. <QuerySet [<Post: First post>]>
  165. >>> Post.objects.filter(tags__276="javascript")
  166. <QuerySet []>
  167. .. note::
  168. PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
  169. However these indexes and those used in :lookup:`slices <arrayfield.slice>`
  170. use 0-based indexing to be consistent with Python.
  171. .. fieldlookup:: arrayfield.slice
  172. Slice transforms
  173. ~~~~~~~~~~~~~~~~
  174. Slice transforms take a slice of the array. Any two non-negative integers can
  175. be used, separated by a single underscore. The lookups available after the
  176. transform do not change. For example:
  177. .. code-block:: pycon
  178. >>> Post.objects.create(name="First post", tags=["thoughts", "django"])
  179. >>> Post.objects.create(name="Second post", tags=["thoughts"])
  180. >>> Post.objects.create(name="Third post", tags=["django", "python", "thoughts"])
  181. >>> Post.objects.filter(tags__0_1=["thoughts"])
  182. <QuerySet [<Post: First post>, <Post: Second post>]>
  183. >>> Post.objects.filter(tags__0_2__contains=["thoughts"])
  184. <QuerySet [<Post: First post>, <Post: Second post>]>
  185. .. note::
  186. PostgreSQL uses 1-based indexing for array fields when writing raw SQL.
  187. However these slices and those used in :lookup:`indexes <arrayfield.index>`
  188. use 0-based indexing to be consistent with Python.
  189. .. admonition:: Multidimensional arrays with indexes and slices
  190. PostgreSQL has some rather esoteric behavior when using indexes and slices
  191. on multidimensional arrays. It will always work to use indexes to reach
  192. down to the final underlying data, but most other slices behave strangely
  193. at the database level and cannot be supported in a logical, consistent
  194. fashion by Django.
  195. ``HStoreField``
  196. ===============
  197. .. class:: HStoreField(**options)
  198. A field for storing key-value pairs. The Python data type used is a
  199. ``dict``. Keys must be strings, and values may be either strings or nulls
  200. (``None`` in Python).
  201. To use this field, you'll need to:
  202. #. Add ``'django.contrib.postgres'`` in your :setting:`INSTALLED_APPS`.
  203. #. :ref:`Set up the hstore extension <create-postgresql-extensions>` in
  204. PostgreSQL.
  205. You'll see an error like ``can't adapt type 'dict'`` if you skip the first
  206. step, or ``type "hstore" does not exist`` if you skip the second.
  207. .. note::
  208. On occasions it may be useful to require or restrict the keys which are
  209. valid for a given field. This can be done using the
  210. :class:`~django.contrib.postgres.validators.KeysValidator`.
  211. Querying ``HStoreField``
  212. ------------------------
  213. In addition to the ability to query by key, there are a number of custom
  214. lookups available for ``HStoreField``.
  215. We will use the following example model::
  216. from django.contrib.postgres.fields import HStoreField
  217. from django.db import models
  218. class Dog(models.Model):
  219. name = models.CharField(max_length=200)
  220. data = HStoreField()
  221. def __str__(self):
  222. return self.name
  223. .. fieldlookup:: hstorefield.key
  224. Key lookups
  225. ~~~~~~~~~~~
  226. To query based on a given key, you can use that key as the lookup name:
  227. .. code-block:: pycon
  228. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
  229. >>> Dog.objects.create(name="Meg", data={"breed": "collie"})
  230. >>> Dog.objects.filter(data__breed="collie")
  231. <QuerySet [<Dog: Meg>]>
  232. You can chain other lookups after key lookups:
  233. .. code-block:: pycon
  234. >>> Dog.objects.filter(data__breed__contains="l")
  235. <QuerySet [<Dog: Rufus>, <Dog: Meg>]>
  236. or use ``F()`` expressions to annotate a key value. For example:
  237. .. code-block:: pycon
  238. >>> from django.db.models import F
  239. >>> rufus = Dog.objects.annotate(breed=F("data__breed"))[0]
  240. >>> rufus.breed
  241. 'labrador'
  242. If the key you wish to query by clashes with the name of another lookup, you
  243. need to use the :lookup:`hstorefield.contains` lookup instead.
  244. .. note::
  245. Key transforms can also be chained with: :lookup:`contains`,
  246. :lookup:`icontains`, :lookup:`endswith`, :lookup:`iendswith`,
  247. :lookup:`iexact`, :lookup:`regex`, :lookup:`iregex`, :lookup:`startswith`,
  248. and :lookup:`istartswith` lookups.
  249. .. warning::
  250. Since any string could be a key in a hstore value, any lookup other than
  251. those listed below will be interpreted as a key lookup. No errors are
  252. raised. Be extra careful for typing mistakes, and always check your queries
  253. work as you intend.
  254. .. fieldlookup:: hstorefield.contains
  255. ``contains``
  256. ~~~~~~~~~~~~
  257. The :lookup:`contains` lookup is overridden on
  258. :class:`~django.contrib.postgres.fields.HStoreField`. The returned objects are
  259. those where the given ``dict`` of key-value pairs are all contained in the
  260. field. It uses the SQL operator ``@>``. For example:
  261. .. code-block:: pycon
  262. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
  263. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  264. >>> Dog.objects.create(name="Fred", data={})
  265. >>> Dog.objects.filter(data__contains={"owner": "Bob"})
  266. <QuerySet [<Dog: Rufus>, <Dog: Meg>]>
  267. >>> Dog.objects.filter(data__contains={"breed": "collie"})
  268. <QuerySet [<Dog: Meg>]>
  269. .. fieldlookup:: hstorefield.contained_by
  270. ``contained_by``
  271. ~~~~~~~~~~~~~~~~
  272. This is the inverse of the :lookup:`contains <hstorefield.contains>` lookup -
  273. the objects returned will be those where the key-value pairs on the object are
  274. a subset of those in the value passed. It uses the SQL operator ``<@``. For
  275. example:
  276. .. code-block:: pycon
  277. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador", "owner": "Bob"})
  278. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  279. >>> Dog.objects.create(name="Fred", data={})
  280. >>> Dog.objects.filter(data__contained_by={"breed": "collie", "owner": "Bob"})
  281. <QuerySet [<Dog: Meg>, <Dog: Fred>]>
  282. >>> Dog.objects.filter(data__contained_by={"breed": "collie"})
  283. <QuerySet [<Dog: Fred>]>
  284. .. fieldlookup:: hstorefield.has_key
  285. ``has_key``
  286. ~~~~~~~~~~~
  287. Returns objects where the given key is in the data. Uses the SQL operator
  288. ``?``. For example:
  289. .. code-block:: pycon
  290. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
  291. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  292. >>> Dog.objects.filter(data__has_key="owner")
  293. <QuerySet [<Dog: Meg>]>
  294. .. fieldlookup:: hstorefield.has_any_keys
  295. ``has_any_keys``
  296. ~~~~~~~~~~~~~~~~
  297. Returns objects where any of the given keys are in the data. Uses the SQL
  298. operator ``?|``. For example:
  299. .. code-block:: pycon
  300. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
  301. >>> Dog.objects.create(name="Meg", data={"owner": "Bob"})
  302. >>> Dog.objects.create(name="Fred", data={})
  303. >>> Dog.objects.filter(data__has_any_keys=["owner", "breed"])
  304. <QuerySet [<Dog: Rufus>, <Dog: Meg>]>
  305. .. fieldlookup:: hstorefield.has_keys
  306. ``has_keys``
  307. ~~~~~~~~~~~~
  308. Returns objects where all of the given keys are in the data. Uses the SQL operator
  309. ``?&``. For example:
  310. .. code-block:: pycon
  311. >>> Dog.objects.create(name="Rufus", data={})
  312. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  313. >>> Dog.objects.filter(data__has_keys=["breed", "owner"])
  314. <QuerySet [<Dog: Meg>]>
  315. .. fieldlookup:: hstorefield.keys
  316. ``keys``
  317. ~~~~~~~~
  318. Returns objects where the array of keys is the given value. Note that the order
  319. is not guaranteed to be reliable, so this transform is mainly useful for using
  320. in conjunction with lookups on
  321. :class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
  322. ``akeys()``. For example:
  323. .. code-block:: pycon
  324. >>> Dog.objects.create(name="Rufus", data={"toy": "bone"})
  325. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  326. >>> Dog.objects.filter(data__keys__overlap=["breed", "toy"])
  327. <QuerySet [<Dog: Rufus>, <Dog: Meg>]>
  328. .. fieldlookup:: hstorefield.values
  329. ``values``
  330. ~~~~~~~~~~
  331. Returns objects where the array of values is the given value. Note that the
  332. order is not guaranteed to be reliable, so this transform is mainly useful for
  333. using in conjunction with lookups on
  334. :class:`~django.contrib.postgres.fields.ArrayField`. Uses the SQL function
  335. ``avals()``. For example:
  336. .. code-block:: pycon
  337. >>> Dog.objects.create(name="Rufus", data={"breed": "labrador"})
  338. >>> Dog.objects.create(name="Meg", data={"breed": "collie", "owner": "Bob"})
  339. >>> Dog.objects.filter(data__values__contains=["collie"])
  340. <QuerySet [<Dog: Meg>]>
  341. .. _range-fields:
  342. Range Fields
  343. ============
  344. There are five range field types, corresponding to the built-in range types in
  345. PostgreSQL. These fields are used to store a range of values; for example the
  346. start and end timestamps of an event, or the range of ages an activity is
  347. suitable for.
  348. All of the range fields translate to :ref:`psycopg Range objects
  349. <psycopg:adapt-range>` in Python, but also accept tuples as input if no bounds
  350. information is necessary. The default is lower bound included, upper bound
  351. excluded, that is ``[)`` (see the PostgreSQL documentation for details about
  352. `different bounds`_). The default bounds can be changed for non-discrete range
  353. fields (:class:`.DateTimeRangeField` and :class:`.DecimalRangeField`) by using
  354. the ``default_bounds`` argument.
  355. ``IntegerRangeField``
  356. ---------------------
  357. .. class:: IntegerRangeField(**options)
  358. Stores a range of integers. Based on an
  359. :class:`~django.db.models.IntegerField`. Represented by an ``int4range`` in
  360. the database and a
  361. ``django.db.backends.postgresql.psycopg_any.NumericRange`` in Python.
  362. Regardless of the bounds specified when saving the data, PostgreSQL always
  363. returns a range in a canonical form that includes the lower bound and
  364. excludes the upper bound, that is ``[)``.
  365. ``BigIntegerRangeField``
  366. ------------------------
  367. .. class:: BigIntegerRangeField(**options)
  368. Stores a range of large integers. Based on a
  369. :class:`~django.db.models.BigIntegerField`. Represented by an ``int8range``
  370. in the database and a
  371. ``django.db.backends.postgresql.psycopg_any.NumericRange`` in Python.
  372. Regardless of the bounds specified when saving the data, PostgreSQL always
  373. returns a range in a canonical form that includes the lower bound and
  374. excludes the upper bound, that is ``[)``.
  375. ``DecimalRangeField``
  376. ---------------------
  377. .. class:: DecimalRangeField(default_bounds='[)', **options)
  378. Stores a range of floating point values. Based on a
  379. :class:`~django.db.models.DecimalField`. Represented by a ``numrange`` in
  380. the database and a
  381. ``django.db.backends.postgresql.psycopg_any.NumericRange`` in Python.
  382. .. attribute:: DecimalRangeField.default_bounds
  383. Optional. The value of ``bounds`` for list and tuple inputs. The
  384. default is lower bound included, upper bound excluded, that is ``[)``
  385. (see the PostgreSQL documentation for details about
  386. `different bounds`_). ``default_bounds`` is not used for
  387. ``django.db.backends.postgresql.psycopg_any.NumericRange`` inputs.
  388. ``DateTimeRangeField``
  389. ----------------------
  390. .. class:: DateTimeRangeField(default_bounds='[)', **options)
  391. Stores a range of timestamps. Based on a
  392. :class:`~django.db.models.DateTimeField`. Represented by a ``tstzrange`` in
  393. the database and a
  394. ``django.db.backends.postgresql.psycopg_any.DateTimeTZRange`` in Python.
  395. .. attribute:: DateTimeRangeField.default_bounds
  396. Optional. The value of ``bounds`` for list and tuple inputs. The
  397. default is lower bound included, upper bound excluded, that is ``[)``
  398. (see the PostgreSQL documentation for details about
  399. `different bounds`_). ``default_bounds`` is not used for
  400. ``django.db.backends.postgresql.psycopg_any.DateTimeTZRange`` inputs.
  401. ``DateRangeField``
  402. ------------------
  403. .. class:: DateRangeField(**options)
  404. Stores a range of dates. Based on a
  405. :class:`~django.db.models.DateField`. Represented by a ``daterange`` in the
  406. database and a ``django.db.backends.postgresql.psycopg_any.DateRange`` in
  407. Python.
  408. Regardless of the bounds specified when saving the data, PostgreSQL always
  409. returns a range in a canonical form that includes the lower bound and
  410. excludes the upper bound, that is ``[)``.
  411. Querying Range Fields
  412. ---------------------
  413. There are a number of custom lookups and transforms for range fields. They are
  414. available on all the above fields, but we will use the following example
  415. model::
  416. from django.contrib.postgres.fields import IntegerRangeField
  417. from django.db import models
  418. class Event(models.Model):
  419. name = models.CharField(max_length=200)
  420. ages = IntegerRangeField()
  421. start = models.DateTimeField()
  422. def __str__(self):
  423. return self.name
  424. We will also use the following example objects:
  425. .. code-block:: pycon
  426. >>> import datetime
  427. >>> from django.utils import timezone
  428. >>> now = timezone.now()
  429. >>> Event.objects.create(name="Soft play", ages=(0, 10), start=now)
  430. >>> Event.objects.create(
  431. ... name="Pub trip", ages=(21, None), start=now - datetime.timedelta(days=1)
  432. ... )
  433. and ``NumericRange``:
  434. >>> from django.db.backends.postgresql.psycopg_any import NumericRange
  435. Containment functions
  436. ~~~~~~~~~~~~~~~~~~~~~
  437. As with other PostgreSQL fields, there are three standard containment
  438. operators: ``contains``, ``contained_by`` and ``overlap``, using the SQL
  439. operators ``@>``, ``<@``, and ``&&`` respectively.
  440. .. fieldlookup:: rangefield.contains
  441. ``contains``
  442. ^^^^^^^^^^^^
  443. >>> Event.objects.filter(ages__contains=NumericRange(4, 5))
  444. <QuerySet [<Event: Soft play>]>
  445. .. fieldlookup:: rangefield.contained_by
  446. ``contained_by``
  447. ^^^^^^^^^^^^^^^^
  448. >>> Event.objects.filter(ages__contained_by=NumericRange(0, 15))
  449. <QuerySet [<Event: Soft play>]>
  450. The ``contained_by`` lookup is also available on the non-range field types:
  451. :class:`~django.db.models.SmallAutoField`,
  452. :class:`~django.db.models.AutoField`, :class:`~django.db.models.BigAutoField`,
  453. :class:`~django.db.models.SmallIntegerField`,
  454. :class:`~django.db.models.IntegerField`,
  455. :class:`~django.db.models.BigIntegerField`,
  456. :class:`~django.db.models.DecimalField`, :class:`~django.db.models.FloatField`,
  457. :class:`~django.db.models.DateField`, and
  458. :class:`~django.db.models.DateTimeField`. For example:
  459. .. code-block:: pycon
  460. >>> from django.db.backends.postgresql.psycopg_any import DateTimeTZRange
  461. >>> Event.objects.filter(
  462. ... start__contained_by=DateTimeTZRange(
  463. ... timezone.now() - datetime.timedelta(hours=1),
  464. ... timezone.now() + datetime.timedelta(hours=1),
  465. ... ),
  466. ... )
  467. <QuerySet [<Event: Soft play>]>
  468. .. fieldlookup:: rangefield.overlap
  469. ``overlap``
  470. ^^^^^^^^^^^
  471. >>> Event.objects.filter(ages__overlap=NumericRange(8, 12))
  472. <QuerySet [<Event: Soft play>]>
  473. Comparison functions
  474. ~~~~~~~~~~~~~~~~~~~~
  475. Range fields support the standard lookups: :lookup:`lt`, :lookup:`gt`,
  476. :lookup:`lte` and :lookup:`gte`. These are not particularly helpful - they
  477. compare the lower bounds first and then the upper bounds only if necessary.
  478. This is also the strategy used to order by a range field. It is better to use
  479. the specific range comparison operators.
  480. .. fieldlookup:: rangefield.fully_lt
  481. ``fully_lt``
  482. ^^^^^^^^^^^^
  483. The returned ranges are strictly less than the passed range. In other words,
  484. all the points in the returned range are less than all those in the passed
  485. range.
  486. >>> Event.objects.filter(ages__fully_lt=NumericRange(11, 15))
  487. <QuerySet [<Event: Soft play>]>
  488. .. fieldlookup:: rangefield.fully_gt
  489. ``fully_gt``
  490. ^^^^^^^^^^^^
  491. The returned ranges are strictly greater than the passed range. In other words,
  492. the all the points in the returned range are greater than all those in the
  493. passed range.
  494. >>> Event.objects.filter(ages__fully_gt=NumericRange(11, 15))
  495. <QuerySet [<Event: Pub trip>]>
  496. .. fieldlookup:: rangefield.not_lt
  497. ``not_lt``
  498. ^^^^^^^^^^
  499. The returned ranges do not contain any points less than the passed range, that
  500. is the lower bound of the returned range is at least the lower bound of the
  501. passed range.
  502. >>> Event.objects.filter(ages__not_lt=NumericRange(0, 15))
  503. <QuerySet [<Event: Soft play>, <Event: Pub trip>]>
  504. .. fieldlookup:: rangefield.not_gt
  505. ``not_gt``
  506. ^^^^^^^^^^
  507. The returned ranges do not contain any points greater than the passed range, that
  508. is the upper bound of the returned range is at most the upper bound of the
  509. passed range.
  510. >>> Event.objects.filter(ages__not_gt=NumericRange(3, 10))
  511. <QuerySet [<Event: Soft play>]>
  512. .. fieldlookup:: rangefield.adjacent_to
  513. ``adjacent_to``
  514. ^^^^^^^^^^^^^^^
  515. The returned ranges share a bound with the passed range.
  516. >>> Event.objects.filter(ages__adjacent_to=NumericRange(10, 21))
  517. <QuerySet [<Event: Soft play>, <Event: Pub trip>]>
  518. Querying using the bounds
  519. ~~~~~~~~~~~~~~~~~~~~~~~~~
  520. Range fields support several extra lookups.
  521. .. fieldlookup:: rangefield.startswith
  522. ``startswith``
  523. ^^^^^^^^^^^^^^
  524. Returned objects have the given lower bound. Can be chained to valid lookups
  525. for the base field.
  526. >>> Event.objects.filter(ages__startswith=21)
  527. <QuerySet [<Event: Pub trip>]>
  528. .. fieldlookup:: rangefield.endswith
  529. ``endswith``
  530. ^^^^^^^^^^^^
  531. Returned objects have the given upper bound. Can be chained to valid lookups
  532. for the base field.
  533. >>> Event.objects.filter(ages__endswith=10)
  534. <QuerySet [<Event: Soft play>]>
  535. .. fieldlookup:: rangefield.isempty
  536. ``isempty``
  537. ^^^^^^^^^^^
  538. Returned objects are empty ranges. Can be chained to valid lookups for a
  539. :class:`~django.db.models.BooleanField`.
  540. >>> Event.objects.filter(ages__isempty=True)
  541. <QuerySet []>
  542. .. fieldlookup:: rangefield.lower_inc
  543. ``lower_inc``
  544. ^^^^^^^^^^^^^
  545. Returns objects that have inclusive or exclusive lower bounds, depending on the
  546. boolean value passed. Can be chained to valid lookups for a
  547. :class:`~django.db.models.BooleanField`.
  548. >>> Event.objects.filter(ages__lower_inc=True)
  549. <QuerySet [<Event: Soft play>, <Event: Pub trip>]>
  550. .. fieldlookup:: rangefield.lower_inf
  551. ``lower_inf``
  552. ^^^^^^^^^^^^^
  553. Returns objects that have unbounded (infinite) or bounded lower bound,
  554. depending on the boolean value passed. Can be chained to valid lookups for a
  555. :class:`~django.db.models.BooleanField`.
  556. >>> Event.objects.filter(ages__lower_inf=True)
  557. <QuerySet []>
  558. .. fieldlookup:: rangefield.upper_inc
  559. ``upper_inc``
  560. ^^^^^^^^^^^^^
  561. Returns objects that have inclusive or exclusive upper bounds, depending on the
  562. boolean value passed. Can be chained to valid lookups for a
  563. :class:`~django.db.models.BooleanField`.
  564. >>> Event.objects.filter(ages__upper_inc=True)
  565. <QuerySet []>
  566. .. fieldlookup:: rangefield.upper_inf
  567. ``upper_inf``
  568. ^^^^^^^^^^^^^
  569. Returns objects that have unbounded (infinite) or bounded upper bound,
  570. depending on the boolean value passed. Can be chained to valid lookups for a
  571. :class:`~django.db.models.BooleanField`.
  572. >>> Event.objects.filter(ages__upper_inf=True)
  573. <QuerySet [<Event: Pub trip>]>
  574. Defining your own range types
  575. -----------------------------
  576. PostgreSQL allows the definition of custom range types. Django's model and form
  577. field implementations use base classes below, and ``psycopg`` provides a
  578. :func:`~psycopg:psycopg.types.range.register_range` to allow use of custom
  579. range types.
  580. .. class:: RangeField(**options)
  581. Base class for model range fields.
  582. .. attribute:: base_field
  583. The model field class to use.
  584. .. attribute:: range_type
  585. The range type to use.
  586. .. attribute:: form_field
  587. The form field class to use. Should be a subclass of
  588. :class:`django.contrib.postgres.forms.BaseRangeField`.
  589. .. class:: django.contrib.postgres.forms.BaseRangeField
  590. Base class for form range fields.
  591. .. attribute:: base_field
  592. The form field to use.
  593. .. attribute:: range_type
  594. The range type to use.
  595. Range operators
  596. ---------------
  597. .. class:: RangeOperators
  598. PostgreSQL provides a set of SQL operators that can be used together with the
  599. range data types (see `the PostgreSQL documentation for the full details of
  600. range operators <https://www.postgresql.org/docs/current/
  601. functions-range.html#RANGE-OPERATORS-TABLE>`_). This class is meant as a
  602. convenient method to avoid typos. The operator names overlap with the names of
  603. corresponding lookups.
  604. .. code-block:: python
  605. class RangeOperators:
  606. EQUAL = "="
  607. NOT_EQUAL = "<>"
  608. CONTAINS = "@>"
  609. CONTAINED_BY = "<@"
  610. OVERLAPS = "&&"
  611. FULLY_LT = "<<"
  612. FULLY_GT = ">>"
  613. NOT_LT = "&>"
  614. NOT_GT = "&<"
  615. ADJACENT_TO = "-|-"
  616. RangeBoundary() expressions
  617. ---------------------------
  618. .. class:: RangeBoundary(inclusive_lower=True, inclusive_upper=False)
  619. .. attribute:: inclusive_lower
  620. If ``True`` (default), the lower bound is inclusive ``'['``, otherwise
  621. it's exclusive ``'('``.
  622. .. attribute:: inclusive_upper
  623. If ``False`` (default), the upper bound is exclusive ``')'``, otherwise
  624. it's inclusive ``']'``.
  625. A ``RangeBoundary()`` expression represents the range boundaries. It can be
  626. used with a custom range functions that expected boundaries, for example to
  627. define :class:`~django.contrib.postgres.constraints.ExclusionConstraint`. See
  628. `the PostgreSQL documentation for the full details <https://www.postgresql.org/
  629. docs/current/rangetypes.html#RANGETYPES-INCLUSIVITY>`_.
  630. .. _different bounds: https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-IO