123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- =========================================
- PostgreSQL specific aggregation functions
- =========================================
- .. module:: django.contrib.postgres.aggregates
- :synopsis: PostgreSQL specific aggregation functions
- These functions are described in more detail in the `PostgreSQL docs
- <https://www.postgresql.org/docs/current/static/functions-aggregate.html>`_.
- .. note::
- All functions come without default aliases, so you must explicitly provide
- one. For example::
- >>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
- {'arr': [0, 1, 2]}
- General-purpose aggregation functions
- =====================================
- ``ArrayAgg``
- ------------
- .. class:: ArrayAgg(expression, distinct=False, filter=None, **extra)
- Returns a list of values, including nulls, concatenated into an array.
- .. attribute:: distinct
- .. versionadded:: 2.0
- An optional boolean argument that determines if array values
- will be distinct. Defaults to ``False``.
- ``BitAnd``
- ----------
- .. class:: BitAnd(expression, filter=None, **extra)
- Returns an ``int`` of the bitwise ``AND`` of all non-null input values, or
- ``None`` if all values are null.
- ``BitOr``
- ---------
- .. class:: BitOr(expression, filter=None, **extra)
- Returns an ``int`` of the bitwise ``OR`` of all non-null input values, or
- ``None`` if all values are null.
- ``BoolAnd``
- -----------
- .. class:: BoolAnd(expression, filter=None, **extra)
- Returns ``True``, if all input values are true, ``None`` if all values are
- null or if there are no values, otherwise ``False`` .
- ``BoolOr``
- ----------
- .. class:: BoolOr(expression, filter=None, **extra)
- Returns ``True`` if at least one input value is true, ``None`` if all
- values are null or if there are no values, otherwise ``False``.
- ``JSONBAgg``
- ------------
- .. class:: JSONBAgg(expressions, filter=None, **extra)
- .. versionadded:: 1.11
- Returns the input values as a ``JSON`` array. Requires PostgreSQL ≥ 9.5.
- ``StringAgg``
- -------------
- .. class:: StringAgg(expression, delimiter, distinct=False, filter=None)
- Returns the input values concatenated into a string, separated by
- the ``delimiter`` string.
- .. attribute:: delimiter
- Required argument. Needs to be a string.
- .. attribute:: distinct
- .. versionadded:: 1.11
- An optional boolean argument that determines if concatenated values
- will be distinct. Defaults to ``False``.
- Aggregate functions for statistics
- ==================================
- ``y`` and ``x``
- ---------------
- The arguments ``y`` and ``x`` for all these functions can be the name of a
- field or an expression returning a numeric data. Both are required.
- ``Corr``
- --------
- .. class:: Corr(y, x, filter=None)
- Returns the correlation coefficient as a ``float``, or ``None`` if there
- aren't any matching rows.
- ``CovarPop``
- ------------
- .. class:: CovarPop(y, x, sample=False, filter=None)
- Returns the population covariance as a ``float``, or ``None`` if there
- aren't any matching rows.
- Has one optional argument:
- .. attribute:: sample
- By default ``CovarPop`` returns the general population covariance.
- However, if ``sample=True``, the return value will be the sample
- population covariance.
- ``RegrAvgX``
- ------------
- .. class:: RegrAvgX(y, x, filter=None)
- Returns the average of the independent variable (``sum(x)/N``) as a
- ``float``, or ``None`` if there aren't any matching rows.
- ``RegrAvgY``
- ------------
- .. class:: RegrAvgY(y, x, filter=None)
- Returns the average of the dependent variable (``sum(y)/N``) as a
- ``float``, or ``None`` if there aren't any matching rows.
- ``RegrCount``
- -------------
- .. class:: RegrCount(y, x, filter=None)
- Returns an ``int`` of the number of input rows in which both expressions
- are not null.
- ``RegrIntercept``
- -----------------
- .. class:: RegrIntercept(y, x, filter=None)
- Returns the y-intercept of the least-squares-fit linear equation determined
- by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
- matching rows.
- ``RegrR2``
- ----------
- .. class:: RegrR2(y, x, filter=None)
- Returns the square of the correlation coefficient as a ``float``, or
- ``None`` if there aren't any matching rows.
- ``RegrSlope``
- -------------
- .. class:: RegrSlope(y, x, filter=None)
- Returns the slope of the least-squares-fit linear equation determined
- by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
- matching rows.
- ``RegrSXX``
- -----------
- .. class:: RegrSXX(y, x, filter=None)
- Returns ``sum(x^2) - sum(x)^2/N`` ("sum of squares" of the independent
- variable) as a ``float``, or ``None`` if there aren't any matching rows.
- ``RegrSXY``
- -----------
- .. class:: RegrSXY(y, x, filter=None)
- Returns ``sum(x*y) - sum(x) * sum(y)/N`` ("sum of products" of independent
- times dependent variable) as a ``float``, or ``None`` if there aren't any
- matching rows.
- ``RegrSYY``
- -----------
- .. class:: RegrSYY(y, x, filter=None)
- Returns ``sum(y^2) - sum(y)^2/N`` ("sum of squares" of the dependent
- variable) as a ``float``, or ``None`` if there aren't any matching rows.
- Usage examples
- ==============
- We will use this example table::
- | FIELD1 | FIELD2 | FIELD3 |
- |--------|--------|--------|
- | foo | 1 | 13 |
- | bar | 2 | (null) |
- | test | 3 | 13 |
- Here's some examples of some of the general-purpose aggregation functions::
- >>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
- {'result': 'foo;bar;test'}
- >>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
- {'result': [1, 2, 3]}
- >>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
- {'result': ['foo', 'bar', 'test']}
- The next example shows the usage of statistical aggregate functions. The
- underlying math will be not described (you can read about this, for example, at
- `wikipedia <https://en.wikipedia.org/wiki/Regression_analysis>`_)::
- >>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
- {'count': 2}
- >>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
- ... avgy=RegrAvgY(y='field3', x='field2'))
- {'avgx': 2, 'avgy': 13}
|