geos.txt 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. .. _ref-geos:
  2. ========
  3. GEOS API
  4. ========
  5. .. module:: django.contrib.gis.geos
  6. :synopsis: GeoDjango's high-level interface to the GEOS library.
  7. Background
  8. ==========
  9. What is GEOS?
  10. -------------
  11. `GEOS`__ stands for **G**\ eometry **E**\ ngine - **O**\ pen **S**\ ource,
  12. and is a C++ library, ported from the `Java Topology Suite`__. GEOS
  13. implements the OpenGIS `Simple Features for SQL`__ spatial predicate functions
  14. and spatial operators. GEOS, now an OSGeo project, was initially developed and
  15. maintained by `Refractions Research`__ of Victoria, Canada.
  16. __ http://trac.osgeo.org/geos/
  17. __ http://sourceforge.net/projects/jts-topo-suite/
  18. __ http://www.opengeospatial.org/standards/sfs
  19. __ http://www.refractions.net/
  20. Features
  21. --------
  22. GeoDjango implements a high-level Python wrapper for the GEOS library, its
  23. features include:
  24. * A BSD-licensed interface to the GEOS geometry routines, implemented purely
  25. in Python using ``ctypes``.
  26. * Loosely-coupled to GeoDjango. For example, :class:`GEOSGeometry` objects
  27. may be used outside of a django project/application. In other words,
  28. no need to have ``DJANGO_SETTINGS_MODULE`` set or use a database, etc.
  29. * Mutability: :class:`GEOSGeometry` objects may be modified.
  30. * Cross-platform and tested; compatible with Windows, Linux, Solaris, and Mac
  31. OS X platforms.
  32. .. _geos-tutorial:
  33. Tutorial
  34. ========
  35. This section contains a brief introduction and tutorial to using
  36. :class:`GEOSGeometry` objects.
  37. Creating a Geometry
  38. -------------------
  39. :class:`GEOSGeometry` objects may be created in a few ways. The first is
  40. to simply instantiate the object on some spatial input -- the following
  41. are examples of creating the same geometry from WKT, HEX, WKB, and GeoJSON::
  42. >>> from django.contrib.gis.geos import GEOSGeometry
  43. >>> pnt = GEOSGeometry('POINT(5 23)') # WKT
  44. >>> pnt = GEOSGeometry('010100000000000000000014400000000000003740') # HEX
  45. >>> pnt = GEOSGeometry(buffer('\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14@\x00\x00\x00\x00\x00\x007@'))
  46. >>> pnt = GEOSGeometry('{ "type": "Point", "coordinates": [ 5.000000, 23.000000 ] }') # GeoJSON
  47. Another option is to use the constructor for the specific geometry type
  48. that you wish to create. For example, a :class:`Point` object may be
  49. created by passing in the X and Y coordinates into its constructor::
  50. >>> from django.contrib.gis.geos import Point
  51. >>> pnt = Point(5, 23)
  52. Finally, there are :func:`fromstr` and :func:`fromfile` factory methods, which
  53. return a :class:`GEOSGeometry` object from an input string or a file::
  54. >>> from django.contrib.gis.geos import fromstr, fromfile
  55. >>> pnt = fromstr('POINT(5 23)')
  56. >>> pnt = fromfile('/path/to/pnt.wkt')
  57. >>> pnt = fromfile(open('/path/to/pnt.wkt'))
  58. Geometries are Pythonic
  59. -----------------------
  60. :class:`GEOSGeometry` objects are 'Pythonic', in other words components may
  61. be accessed, modified, and iterated over using standard Python conventions.
  62. For example, you can iterate over the coordinates in a :class:`Point`::
  63. >>> pnt = Point(5, 23)
  64. >>> [coord for coord in pnt]
  65. [5.0, 23.0]
  66. With any geometry object, the :attr:`GEOSGeometry.coords` property
  67. may be used to get the geometry coordinates as a Python tuple::
  68. >>> pnt.coords
  69. (5.0, 23.0)
  70. You can get/set geometry components using standard Python indexing
  71. techniques. However, what is returned depends on the geometry type
  72. of the object. For example, indexing on a :class:`LineString`
  73. returns a coordinate tuple::
  74. >>> from django.contrib.gis.geos import LineString
  75. >>> line = LineString((0, 0), (0, 50), (50, 50), (50, 0), (0, 0))
  76. >>> line[0]
  77. (0.0, 0.0)
  78. >>> line[-2]
  79. (50.0, 0.0)
  80. Whereas indexing on a :class:`Polygon` will return the ring
  81. (a :class:`LinearRing` object) corresponding to the index::
  82. >>> from django.contrib.gis.geos import Polygon
  83. >>> poly = Polygon( ((0.0, 0.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (0.0, 0.0)) )
  84. >>> poly[0]
  85. <LinearRing object at 0x1044395b0>
  86. >>> poly[0][-2] # second-to-last coordinate of external ring
  87. (50.0, 0.0)
  88. In addition, coordinates/components of the geometry may added or modified,
  89. just like a Python list::
  90. >>> line[0] = (1.0, 1.0)
  91. >>> line.pop()
  92. (0.0, 0.0)
  93. >>> line.append((1.0, 1.0))
  94. >>> line.coords
  95. ((1.0, 1.0), (0.0, 50.0), (50.0, 50.0), (50.0, 0.0), (1.0, 1.0))
  96. Geometry Objects
  97. ================
  98. ``GEOSGeometry``
  99. ----------------
  100. .. class:: GEOSGeometry(geo_input[, srid=None])
  101. :param geo_input: Geometry input value
  102. :type geo_input: string or buffer
  103. :param srid: spatial reference identifier
  104. :type srid: integer
  105. This is the base class for all GEOS geometry objects. It initializes on the
  106. given ``geo_input`` argument, and then assumes the proper geometry subclass
  107. (e.g., ``GEOSGeometry('POINT(1 1)')`` will create a :class:`Point` object).
  108. The following input formats, along with their corresponding Python types,
  109. are accepted:
  110. ============= ======================
  111. Format Input Type
  112. ============= ======================
  113. WKT / EWKT ``str`` or ``unicode``
  114. HEX / HEXEWKB ``str`` or ``unicode``
  115. WKB / EWKB ``buffer``
  116. GeoJSON ``str`` or ``unicode``
  117. ============= ======================
  118. Properties
  119. ~~~~~~~~~~
  120. .. attribute:: GEOSGeometry.coords
  121. Returns the coordinates of the geometry as a tuple.
  122. .. attribute:: GEOSGeometry.empty
  123. Returns whether or not the set of points in the geometry is empty.
  124. .. attribute:: GEOSGeometry.geom_type
  125. Returns a string corresponding to the type of geometry. For example::
  126. >>> pnt = GEOSGeometry('POINT(5 23)')
  127. >>> pnt.geom_type
  128. 'Point'
  129. .. attribute:: GEOSGeometry.geom_typeid
  130. Returns the GEOS geometry type identification number. The following table
  131. shows the value for each geometry type:
  132. =========================== ========
  133. Geometry ID
  134. =========================== ========
  135. :class:`Point` 0
  136. :class:`LineString` 1
  137. :class:`LinearRing` 2
  138. :class:`Polygon` 3
  139. :class:`MultiPoint` 4
  140. :class:`MultiLineString` 5
  141. :class:`MultiPolygon` 6
  142. :class:`GeometryCollection` 7
  143. =========================== ========
  144. .. attribute:: GEOSGeometry.num_coords
  145. Returns the number of coordinates in the geometry.
  146. .. attribute:: GEOSGeometry.num_geom
  147. Returns the number of geometries in this geometry. In other words, will
  148. return 1 on anything but geometry collections.
  149. .. attribute:: GEOSGeometry.hasz
  150. Returns a boolean indicating whether the geometry is three-dimensional.
  151. .. attribute:: GEOSGeometry.ring
  152. Returns a boolean indicating whether the geometry is a ``LinearRing``.
  153. .. attribute:: GEOSGeometry.simple
  154. Returns a boolean indicating whether the geometry is 'simple'. A geometry
  155. is simple if and only if it does not intersect itself (except at boundary
  156. points). For example, a :class:`LineString` object is not simple if it
  157. intersects itself. Thus, :class:`LinearRing` and :class`Polygon` objects
  158. are always simple because they do cannot intersect themselves, by
  159. definition.
  160. .. attribute:: GEOSGeometry.valid
  161. Returns a boolean indicating whether the geometry is valid.
  162. .. attribute:: GEOSGeometry.valid_reason
  163. .. versionadded:: 1.3
  164. Returns a string describing the reason why a geometry is invalid.
  165. .. attribute:: GEOSGeometry.srid
  166. Property that may be used to retrieve or set the SRID associated with the
  167. geometry. For example::
  168. >>> pnt = Point(5, 23)
  169. >>> print(pnt.srid)
  170. None
  171. >>> pnt.srid = 4326
  172. >>> pnt.srid
  173. 4326
  174. Output Properties
  175. ~~~~~~~~~~~~~~~~~
  176. The properties in this section export the :class:`GEOSGeometry` object into
  177. a different. This output may be in the form of a string, buffer, or even
  178. another object.
  179. .. attribute:: GEOSGeometry.ewkt
  180. Returns the "extended" Well-Known Text of the geometry. This representation
  181. is specific to PostGIS and is a super set of the OGC WKT standard. [#fnogc]_
  182. Essentially the SRID is prepended to the WKT representation, for example
  183. ``SRID=4326;POINT(5 23)``.
  184. .. note::
  185. The output from this property does not include the 3dm, 3dz, and 4d
  186. information that PostGIS supports in its EWKT representations.
  187. .. attribute:: GEOSGeometry.hex
  188. Returns the WKB of this Geometry in hexadecimal form. Please note
  189. that the SRID and Z values are not included in this representation
  190. because it is not a part of the OGC specification (use the
  191. :attr:`GEOSGeometry.hexewkb` property instead).
  192. .. attribute:: GEOSGeometry.hexewkb
  193. Returns the EWKB of this Geometry in hexadecimal form. This is an
  194. extension of the WKB specification that includes SRID and Z values
  195. that are a part of this geometry.
  196. .. note::
  197. GEOS 3.1 is *required* if you want valid 3D HEXEWKB.
  198. .. attribute:: GEOSGeometry.json
  199. Returns the GeoJSON representation of the geometry.
  200. .. note::
  201. Requires GDAL.
  202. .. attribute:: GEOSGeometry.geojson
  203. Alias for :attr:`GEOSGeometry.json`.
  204. .. attribute:: GEOSGeometry.kml
  205. Returns a `KML`__ (Keyhole Markup Language) representation of the
  206. geometry. This should only be used for geometries with an SRID of
  207. 4326 (WGS84), but this restriction is not enforced.
  208. .. attribute:: GEOSGeometry.ogr
  209. Returns an :class:`~django.contrib.gis.gdal.OGRGeometry` object
  210. correspondg to the GEOS geometry.
  211. .. note::
  212. Requires GDAL.
  213. .. _wkb:
  214. .. attribute:: GEOSGeometry.wkb
  215. Returns the WKB (Well-Known Binary) representation of this Geometry
  216. as a Python buffer. SRID and Z values are not included, use the
  217. :attr:`GEOSGeometry.ewkb` property instead.
  218. .. _ewkb:
  219. .. attribute:: GEOSGeometry.ewkb
  220. Return the EWKB representation of this Geometry as a Python buffer.
  221. This is an extension of the WKB specification that includes any SRID
  222. and Z values that are a part of this geometry.
  223. .. note::
  224. GEOS 3.1 is *required* if you want valid 3D EWKB.
  225. .. attribute:: GEOSGeometry.wkt
  226. Returns the Well-Known Text of the geometry (an OGC standard).
  227. __ http://code.google.com/apis/kml/documentation/
  228. Spatial Predicate Methods
  229. ~~~~~~~~~~~~~~~~~~~~~~~~~
  230. All of the following spatial predicate methods take another
  231. :class:`GEOSGeometry` instance (``other``) as a parameter, and
  232. return a boolean.
  233. .. method:: GEOSGeometry.contains(other)
  234. Returns ``True`` if :meth:`GEOSGeometry.within` is ``False``.
  235. .. method:: GEOSGeometry.crosses(other)
  236. Returns ``True`` if the DE-9IM intersection matrix for the two Geometries
  237. is ``T*T******`` (for a point and a curve,a point and an area or a line
  238. and an area) ``0********`` (for two curves).
  239. .. method:: GEOSGeometry.disjoint(other)
  240. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  241. is ``FF*FF****``.
  242. .. method:: GEOSGeometry.equals(other)
  243. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  244. is ``T*F**FFF*``.
  245. .. method:: GEOSGeometry.equals_exact(other, tolerance=0)
  246. Returns true if the two geometries are exactly equal, up to a
  247. specified tolerance. The ``tolerance`` value should be a floating
  248. point number representing the error tolerance in the comparison, e.g.,
  249. ``poly1.equals_exact(poly2, 0.001)`` will compare equality to within
  250. one thousandth of a unit.
  251. .. method:: GEOSGeometry.intersects(other)
  252. Returns ``True`` if :meth:`GEOSGeometry.disjoint` is ``False``.
  253. .. method:: GEOSGeometry.overlaps(other)
  254. Returns true if the DE-9IM intersection matrix for the two geometries
  255. is ``T*T***T**`` (for two points or two surfaces) ``1*T***T**``
  256. (for two curves).
  257. .. method:: GEOSGeometry.relate_pattern(other, pattern)
  258. Returns ``True`` if the elements in the DE-9IM intersection matrix
  259. for this geometry and the other matches the given ``pattern`` --
  260. a string of nine characters from the alphabet: {``T``, ``F``, ``*``, ``0``}.
  261. .. method:: GEOSGeometry.touches(other)
  262. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  263. is ``FT*******``, ``F**T*****`` or ``F***T****``.
  264. .. method:: GEOSGeometry.within(other)
  265. Returns ``True`` if the DE-9IM intersection matrix for the two geometries
  266. is ``T*F**F***``.
  267. Topological Methods
  268. ~~~~~~~~~~~~~~~~~~~
  269. .. method:: GEOSGeometry.buffer(width, quadsegs=8)
  270. Returns a :class:`GEOSGeometry` that represents all points whose distance
  271. from this geometry is less than or equal to the given ``width``. The optional
  272. ``quadsegs`` keyword sets the number of segments used to approximate a
  273. quarter circle (defaults is 8).
  274. .. method:: GEOSGeometry.difference(other)
  275. Returns a :class:`GEOSGeometry` representing the points making up this
  276. geometry that do not make up other.
  277. .. method:: GEOSGeometry:intersection(other)
  278. Returns a :class:`GEOSGeometry` representing the points shared by this
  279. geometry and other.
  280. .. method:: GEOSGeometry.relate(other)
  281. Returns the DE-9IM intersection matrix (a string) representing the
  282. topological relationship between this geometry and the other.
  283. .. method:: GEOSGeometry.simplify(tolerance=0.0, preserve_topology=False)
  284. Returns a new :class:`GEOSGeometry`, simplified using the Douglas-Peucker
  285. algorithm to the specified tolerance. A higher tolerance value implies
  286. less points in the output. If no tolerance is tolerance provided,
  287. it defaults to 0.
  288. By default, this function does not preserve topology - e.g.,
  289. :class:`Polygon` objects can be split, collapsed into lines or disappear.
  290. :class:`Polygon` holes can be created or disappear, and lines can cross.
  291. By specifying ``preserve_topology=True``, the result will have the same
  292. dimension and number of components as the input, however, this is
  293. significantly slower.
  294. .. method:: GEOSGeometry.sym_difference(other)
  295. Returns a :class:`GEOSGeometry` combining the points in this geometry
  296. not in other, and the points in other not in this geometry.
  297. .. method:: GEOSGeometry.union(other)
  298. Returns a :class:`GEOSGeometry` representing all the points in this
  299. geometry and the other.
  300. Topological Properties
  301. ~~~~~~~~~~~~~~~~~~~~~~
  302. .. attribute:: GEOSGeometry.boundary
  303. Returns the boundary as a newly allocated Geometry object.
  304. .. attribute:: GEOSGeometry.centroid
  305. Returns a :class:`Point` object representing the geometric center of
  306. the geometry. The point is not guaranteed to be on the interior
  307. of the geometry.
  308. .. attribute:: GEOSGeometry.convex_hull
  309. Returns the smallest :class:`Polygon` that contains all the points in
  310. the geometry.
  311. .. attribute:: GEOSGeometry.envelope
  312. Returns a :class:`Polygon` that represents the bounding envelope of
  313. this geometry.
  314. .. attribute:: GEOSGeometry.point_on_surface
  315. Computes and returns a :class:`Point` guaranteed to be on the interior
  316. of this geometry.
  317. Other Properties & Methods
  318. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  319. .. attribute:: GEOSGeometry.area
  320. This property returns the area of the Geometry.
  321. .. attribute:: GEOSGeometry.extent
  322. This property returns the extent of this geometry as a 4-tuple,
  323. consisting of (xmin, ymin, xmax, ymax).
  324. .. method:: GEOSGeometry.clone()
  325. This method returns a :class:`GEOSGeometry` that is a clone of the original.
  326. .. method:: GEOSGeometry.distance(geom)
  327. Returns the distance between the closest points on this geometry and the given
  328. ``geom`` (another :class:`GEOSGeometry` object).
  329. .. note::
  330. GEOS distance calculations are linear -- in other words, GEOS does not
  331. perform a spherical calculation even if the SRID specifies a geographic
  332. coordinate system.
  333. .. attribute:: GEOSGeometry.length
  334. Returns the length of this geometry (e.g., 0 for a :class:`Point`,
  335. the length of a :class:`LineString`, or the circumference of
  336. a :class:`Polygon`).
  337. .. attribute:: GEOSGeometry.prepared
  338. .. note::
  339. Support for prepared geometries requires GEOS 3.1.
  340. Returns a GEOS ``PreparedGeometry`` for the contents of this geometry.
  341. ``PreparedGeometry`` objects are optimized for the contains, intersects,
  342. and covers operations. Refer to the :ref:`prepared-geometries` documentation
  343. for more information.
  344. .. attribute:: GEOSGeometry.srs
  345. Returns a :class:`~django.contrib.gis.gdal.SpatialReference` object
  346. corresponding to the SRID of the geometry or ``None``.
  347. .. note::
  348. Requires GDAL.
  349. .. method:: GEOSGeometry.transform(ct, clone=False)
  350. .. versionchanged:: 1.3
  351. Transforms the geometry according to the given coordinate transformation paramter
  352. (``ct``), which may be an integer SRID, spatial reference WKT string,
  353. a PROJ.4 string, a :class:`~django.contrib.gis.gdal.SpatialReference` object, or a
  354. :class:`~django.contrib.gis.gdal.CoordTransform` object. By default, the geometry
  355. is transformed in-place and nothing is returned. However if the ``clone`` keyword
  356. is set, then the geometry is not modified and a transformed clone of the geometry
  357. is returned instead.
  358. .. note::
  359. Requires GDAL.
  360. .. note::
  361. Prior to 1.3, this method would silently no-op if GDAL was not available.
  362. Now, a :class:`~django.contrib.gis.geos.GEOSException` is raised as
  363. application code relying on this behavior is in error. In addition,
  364. use of this method when the SRID is ``None`` or less than 0 now also generates
  365. a :class:`~django.contrib.gis.geos.GEOSException`.
  366. ``Point``
  367. ---------
  368. .. class:: Point(x, y, z=None, srid=None)
  369. ``Point`` objects are instantiated using arguments that represent
  370. the component coordinates of the point or with a single sequence
  371. coordinates. For example, the following are equivalent::
  372. >>> pnt = Point(5, 23)
  373. >>> pnt = Point([5, 23])
  374. ``LineString``
  375. --------------
  376. .. class:: LineString(*args, **kwargs)
  377. ``LineString`` objects are instantiated using arguments that are
  378. either a sequence of coordinates or :class:`Point` objects.
  379. For example, the following are equivalent::
  380. >>> ls = LineString((0, 0), (1, 1))
  381. >>> ls = LineString(Point(0, 0), Point(1, 1))
  382. In addition, ``LineString`` objects may also be created by passing
  383. in a single sequence of coordinate or :class:`Point` objects::
  384. >>> ls = LineString( ((0, 0), (1, 1)) )
  385. >>> ls = LineString( [Point(0, 0), Point(1, 1)] )
  386. ``LinearRing``
  387. --------------
  388. .. class:: LinearRing(*args, **kwargs)
  389. ``LinearRing`` objects are constructed in the exact same way as
  390. :class:`LineString` objects, however the coordinates must be
  391. *closed*, in other words, the first coordinates must be the
  392. same as the last coordinates. For example::
  393. >>> ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))
  394. Notice that ``(0, 0)`` is the first and last coordinate -- if
  395. they were not equal, an error would be raised.
  396. ``Polygon``
  397. -----------
  398. .. class:: Polygon(*args, **kwargs)
  399. ``Polygon`` objects may be instantiated by passing in one or
  400. more parameters that represent the rings of the polygon. The
  401. parameters must either be :class:`LinearRing` instances, or
  402. a sequence that may be used to construct a :class:`LinearRing`::
  403. >>> ext_coords = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
  404. >>> int_coords = ((0.4, 0.4), (0.4, 0.6), (0.6, 0.6), (0.6, 0.4), (0.4, 0.4))
  405. >>> poly = Polygon(ext_coords, int_coords)
  406. >>> poly = Polygon(LinearRing(ext_coords), LinearRing(int_coords))
  407. .. classmethod:: from_bbox(bbox)
  408. Returns a polygon object from the given bounding-box, a 4-tuple
  409. comprising (xmin, ymin, xmax, ymax).
  410. .. attribute:: num_interior_rings
  411. Returns the number of interior rings in this geometry.
  412. Geometry Collections
  413. ====================
  414. ``MultiPoint``
  415. --------------
  416. .. class:: MultiPoint(*args, **kwargs)
  417. ``MultiPoint`` objects may be instantiated by passing in one
  418. or more :class:`Point` objects as arguments, or a single
  419. sequence of :class:`Point` objects::
  420. >>> mp = MultiPoint(Point(0, 0), Point(1, 1))
  421. >>> mp = MultiPoint( (Point(0, 0), Point(1, 1)) )
  422. ``MultiLineString``
  423. -------------------
  424. .. class:: MultiLineString(*args, **kwargs)
  425. ``MultiLineString`` objects may be instantiated by passing in one
  426. or more :class:`LineString` objects as arguments, or a single
  427. sequence of :class:`LineString` objects::
  428. >>> ls1 = LineString((0, 0), (1, 1))
  429. >>> ls2 = LineString((2, 2), (3, 3))
  430. >>> mls = MultiLineString(ls1, ls2)
  431. >>> mls = MultiLineString([ls1, ls2])
  432. .. attribute:: merged
  433. Returns a :class:`LineString` representing the line merge of
  434. all the components in this ``MultiLineString``.
  435. ``MultiPolygon``
  436. ----------------
  437. .. class:: MultiPolygon(*args, **kwargs)
  438. ``MultiPolygon`` objects may be instantiated by passing one or
  439. more :class:`Polygon` objects as arguments, or a single sequence
  440. of :class:`Polygon` objects::
  441. >>> p1 = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
  442. >>> p2 = Polygon( ((1, 1), (1, 2), (2, 2), (1, 1)) )
  443. >>> mp = MultiPolygon(p1, p2)
  444. >>> mp = MultiPolygon([p1, p2])
  445. .. attribute:: cascaded_union
  446. Returns a :class:`Polygon` that is the union of all of the component
  447. polygons in this collection. The algorithm employed is significantly
  448. more efficient (faster) than trying to union the geometries together
  449. individually. [#fncascadedunion]_
  450. .. note::
  451. GEOS 3.1 is *required* to peform cascaded unions.
  452. ``GeometryCollection``
  453. ----------------------
  454. .. class:: GeometryCollection(*args, **kwargs)
  455. ``GeometryCollection`` objects may be instantiated by passing in
  456. one or more other :class:`GEOSGeometry` as arguments, or a single
  457. sequence of :class:`GEOSGeometry` objects::
  458. >>> poly = Polygon( ((0, 0), (0, 1), (1, 1), (0, 0)) )
  459. >>> gc = GeometryCollection(Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly)
  460. >>> gc = GeometryCollection((Point(0, 0), MultiPoint(Point(0, 0), Point(1, 1)), poly))
  461. .. _prepared-geometries:
  462. Prepared Geometries
  463. ===================
  464. In order to obtain a prepared geometry, just access the
  465. :attr:`GEOSGeometry.prepared` property. Once you have a
  466. ``PreparedGeometry`` instance its spatial predicate methods, listed below,
  467. may be used with other ``GEOSGeometry`` objects. An operation with a prepared
  468. geometry can be orders of magnitude faster -- the more complex the geometry
  469. that is prepared, the larger the speedup in the operation. For more information,
  470. please consult the `GEOS wiki page on prepared geometries <http://trac.osgeo.org/geos/wiki/PreparedGeometry>`_.
  471. .. note::
  472. GEOS 3.1 is *required* in order to use prepared geometries.
  473. For example::
  474. >>> from django.contrib.gis.geos import Point, Polygon
  475. >>> poly = Polygon.from_bbox((0, 0, 5, 5))
  476. >>> prep_poly = poly.prepared
  477. >>> prep_poly.contains(Point(2.5, 2.5))
  478. True
  479. ``PreparedGeometry``
  480. --------------------
  481. .. class:: PreparedGeometry
  482. All methods on ``PreparedGeometry`` take an ``other`` argument, which
  483. must be a :class:`GEOSGeometry` instance.
  484. .. method:: contains(other)
  485. .. method:: contains_properly(other)
  486. .. method:: covers(other)
  487. .. method:: intersects(other)
  488. Geometry Factories
  489. ==================
  490. .. function:: fromfile(file_h)
  491. :param file_h: input file that contains spatial data
  492. :type file_h: a Python ``file`` object or a string path to the file
  493. :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the file
  494. Example::
  495. >>> from django.contrib.gis.geos import fromfile
  496. >>> g = fromfile('/home/bob/geom.wkt')
  497. .. function:: fromstr(string, [,srid=None])
  498. :param string: string that contains spatial data
  499. :type string: string
  500. :param srid: spatial reference identifier
  501. :type srid: integer
  502. :rtype: a :class:`GEOSGeometry` corresponding to the spatial data in the string
  503. Example::
  504. >>> from django.contrib.gis.geos import fromstr
  505. >>> pnt = fromstr('POINT(-90.5 29.5)', srid=4326)
  506. I/O Objects
  507. ===========
  508. Reader Objects
  509. --------------
  510. The reader I/O classes simply return a :class:`GEOSGeometry` instance from the
  511. WKB and/or WKT input given to their ``read(geom)`` method.
  512. .. class:: WKBReader
  513. Example::
  514. >>> from django.contrib.gis.geos import WKBReader
  515. >>> wkb_r = WKBReader()
  516. >>> wkb_r.read('0101000000000000000000F03F000000000000F03F')
  517. <Point object at 0x103a88910>
  518. .. class:: WKTReader
  519. Example::
  520. >>> from django.contrib.gis.geos import WKTReader
  521. >>> wkt_r = WKTReader()
  522. >>> wkt_r.read('POINT(1 1)')
  523. <Point object at 0x103a88b50>
  524. Writer Objects
  525. --------------
  526. All writer objects have a ``write(geom)`` method that returns either the
  527. WKB or WKT of the given geometry. In addition, :class:`WKBWriter` objects
  528. also have properties that may be used to change the byte order, and or
  529. include the SRID and 3D values (in other words, EWKB).
  530. .. class:: WKBWriter
  531. ``WKBWriter`` provides the most control over its output. By default it
  532. returns OGC-compliant WKB when it's ``write`` method is called. However,
  533. it has properties that allow for the creation of EWKB, a superset of the
  534. WKB standard that includes additional information.
  535. .. method:: WKBWriter.write(geom)
  536. Returns the WKB of the given geometry as a Python ``buffer`` object.
  537. Example::
  538. >>> from django.contrib.gis.geos import Point, WKBWriter
  539. >>> pnt = Point(1, 1)
  540. >>> wkb_w = WKBWriter()
  541. >>> wkb_w.write(pnt)
  542. <read-only buffer for 0x103a898f0, size -1, offset 0 at 0x103a89930>
  543. .. method:: WKBWriter.write_hex(geom)
  544. Returns WKB of the geometry in hexadecimal. Example::
  545. >>> from django.contrib.gis.geos import Point, WKBWriter
  546. >>> pnt = Point(1, 1)
  547. >>> wkb_w = WKBWriter()
  548. >>> wkb_w.write_hex(pnt)
  549. '0101000000000000000000F03F000000000000F03F'
  550. .. attribute:: WKBWriter.byteorder
  551. This property may be be set to change the byte-order of the geometry
  552. representation.
  553. =============== =================================================
  554. Byteorder Value Description
  555. =============== =================================================
  556. 0 Big Endian (e.g., compatible with RISC systems)
  557. 1 Little Endian (e.g., compatible with x86 systems)
  558. =============== =================================================
  559. Example::
  560. >>> from django.contrib.gis.geos import Point, WKBWriter
  561. >>> wkb_w = WKBWriter()
  562. >>> pnt = Point(1, 1)
  563. >>> wkb_w.write_hex(pnt)
  564. '0101000000000000000000F03F000000000000F03F'
  565. >>> wkb_w.byteorder = 0
  566. '00000000013FF00000000000003FF0000000000000'
  567. .. attribute:: WKBWriter.outdim
  568. This property may be set to change the output dimension of the geometry
  569. representation. In other words, if you have a 3D geometry then set to 3
  570. so that the Z value is included in the WKB.
  571. ============ ===========================
  572. Outdim Value Description
  573. ============ ===========================
  574. 2 The default, output 2D WKB.
  575. 3 Output 3D EWKB.
  576. ============ ===========================
  577. Example::
  578. >>> from django.contrib.gis.geos import Point, WKBWriter
  579. >>> wkb_w = WKBWriter()
  580. >>> wkb_w.outdim
  581. 2
  582. >>> pnt = Point(1, 1, 1)
  583. >>> wkb_w.write_hex(pnt) # By default, no Z value included:
  584. '0101000000000000000000F03F000000000000F03F'
  585. >>> wkb_w.outdim = 3 # Tell writer to include Z values
  586. >>> wkb_w.write_hex(pnt)
  587. '0101000080000000000000F03F000000000000F03F000000000000F03F'
  588. .. attribute:: WKBWriter.srid
  589. Set this property with a boolean to indicate whether the SRID of the
  590. geometry should be included with the WKB representation. Example::
  591. >>> from django.contrib.gis.geos import Point, WKBWriter
  592. >>> wkb_w = WKBWriter()
  593. >>> pnt = Point(1, 1, srid=4326)
  594. >>> wkb_w.write_hex(pnt) # By default, no SRID included:
  595. '0101000000000000000000F03F000000000000F03F'
  596. >>> wkb_w.srid = True # Tell writer to include SRID
  597. >>> wkb_w.write_hex(pnt)
  598. '0101000020E6100000000000000000F03F000000000000F03F'
  599. .. class:: WKTWriter
  600. .. method:: WKTWriter.write(geom)
  601. Returns the WKT of the given geometry. Example::
  602. >>> from django.contrib.gis.geos import Point, WKTWriter
  603. >>> pnt = Point(1, 1)
  604. >>> wkt_w = WKTWriter()
  605. >>> wkt_w.write(pnt)
  606. 'POINT (1.0000000000000000 1.0000000000000000)'
  607. .. rubric:: Footnotes
  608. .. [#fnogc] *See* `PostGIS EWKB, EWKT and Canonical Forms <http://postgis.refractions.net/docs/ch04.html#id2591381>`_, PostGIS documentation at Ch. 4.1.2.
  609. .. [#fncascadedunion] For more information, read Paul Ramsey's blog post about `(Much) Faster Unions in PostGIS 1.4 <http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html>`_ and Martin Davis' blog post on `Fast polygon merging in JTS using Cascaded Union <http://lin-ear-th-inking.blogspot.com/2007/11/fast-polygon-merging-in-jts-using.html>`_.
  610. Settings
  611. ========
  612. .. setting:: GEOS_LIBRARY_PATH
  613. GEOS_LIBRARY_PATH
  614. -----------------
  615. A string specifying the location of the GEOS C library. Typically,
  616. this setting is only used if the GEOS C library is in a non-standard
  617. location (e.g., ``/home/bob/lib/libgeos_c.so``).
  618. .. note::
  619. The setting must be the *full* path to the **C** shared library; in
  620. other words you want to use ``libgeos_c.so``, not ``libgeos.so``.