123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026 |
- import ctypes
- import random
- import unittest
- from django.contrib.gis.geos import *
- from django.contrib.gis.geos.base import gdal, numpy, GEOSBase
- from django.contrib.gis.geos.libgeos import GEOS_PREPARE
- from django.contrib.gis.geometry.test_data import TestDataMixin
- class GEOSTest(unittest.TestCase, TestDataMixin):
- @property
- def null_srid(self):
- """
- Returns the proper null SRID depending on the GEOS version.
- See the comments in `test15_srid` for more details.
- """
- info = geos_version_info()
- if info['version'] == '3.0.0' and info['release_candidate']:
- return -1
- else:
- return None
- def test00_base(self):
- "Tests out the GEOSBase class."
- # Testing out GEOSBase class, which provides a `ptr` property
- # that abstracts out access to underlying C pointers.
- class FakeGeom1(GEOSBase):
- pass
- # This one only accepts pointers to floats
- c_float_p = ctypes.POINTER(ctypes.c_float)
- class FakeGeom2(GEOSBase):
- ptr_type = c_float_p
- # Default ptr_type is `c_void_p`.
- fg1 = FakeGeom1()
- # Default ptr_type is C float pointer
- fg2 = FakeGeom2()
- # These assignments are OK -- None is allowed because
- # it's equivalent to the NULL pointer.
- fg1.ptr = ctypes.c_void_p()
- fg1.ptr = None
- fg2.ptr = c_float_p(ctypes.c_float(5.23))
- fg2.ptr = None
- # Because pointers have been set to NULL, an exception should be
- # raised when we try to access it. Raising an exception is
- # preferrable to a segmentation fault that commonly occurs when
- # a C method is given a NULL memory reference.
- for fg in (fg1, fg2):
- # Equivalent to `fg.ptr`
- self.assertRaises(GEOSException, fg._get_ptr)
- # Anything that is either not None or the acceptable pointer type will
- # result in a TypeError when trying to assign it to the `ptr` property.
- # Thus, memmory addresses (integers) and pointers of the incorrect type
- # (in `bad_ptrs`) will not be allowed.
- bad_ptrs = (5, ctypes.c_char_p('foobar'))
- for bad_ptr in bad_ptrs:
- # Equivalent to `fg.ptr = bad_ptr`
- self.assertRaises(TypeError, fg1._set_ptr, bad_ptr)
- self.assertRaises(TypeError, fg2._set_ptr, bad_ptr)
- def test01a_wkt(self):
- "Testing WKT output."
- for g in self.geometries.wkt_out:
- geom = fromstr(g.wkt)
- self.assertEqual(g.ewkt, geom.wkt)
- def test01b_hex(self):
- "Testing HEX output."
- for g in self.geometries.hex_wkt:
- geom = fromstr(g.wkt)
- self.assertEqual(g.hex, geom.hex)
- def test01b_hexewkb(self):
- "Testing (HEX)EWKB output."
- from binascii import a2b_hex
- # For testing HEX(EWKB).
- ogc_hex = '01010000000000000000000000000000000000F03F'
- # `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
- hexewkb_2d = '0101000020E61000000000000000000000000000000000F03F'
- # `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
- hexewkb_3d = '01010000A0E61000000000000000000000000000000000F03F0000000000000040'
- pnt_2d = Point(0, 1, srid=4326)
- pnt_3d = Point(0, 1, 2, srid=4326)
- # OGC-compliant HEX will not have SRID nor Z value.
- self.assertEqual(ogc_hex, pnt_2d.hex)
- self.assertEqual(ogc_hex, pnt_3d.hex)
- # HEXEWKB should be appropriate for its dimension -- have to use an
- # a WKBWriter w/dimension set accordingly, else GEOS will insert
- # garbage into 3D coordinate if there is none. Also, GEOS has a
- # a bug in versions prior to 3.1 that puts the X coordinate in
- # place of Z; an exception should be raised on those versions.
- self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
- if GEOS_PREPARE:
- self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
- self.assertEqual(True, GEOSGeometry(hexewkb_3d).hasz)
- else:
- try:
- hexewkb = pnt_3d.hexewkb
- except GEOSException:
- pass
- else:
- self.fail('Should have raised GEOSException.')
- # Same for EWKB.
- self.assertEqual(buffer(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
- if GEOS_PREPARE:
- self.assertEqual(buffer(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)
- else:
- try:
- ewkb = pnt_3d.ewkb
- except GEOSException:
- pass
- else:
- self.fail('Should have raised GEOSException')
- # Redundant sanity check.
- self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)
- def test01c_kml(self):
- "Testing KML output."
- for tg in self.geometries.wkt_out:
- geom = fromstr(tg.wkt)
- kml = getattr(tg, 'kml', False)
- if kml: self.assertEqual(kml, geom.kml)
- def test01d_errors(self):
- "Testing the Error handlers."
- # string-based
- print("\nBEGIN - expecting GEOS_ERROR; safe to ignore.\n")
- for err in self.geometries.errors:
- try:
- g = fromstr(err.wkt)
- except (GEOSException, ValueError):
- pass
- # Bad WKB
- self.assertRaises(GEOSException, GEOSGeometry, buffer('0'))
- print("\nEND - expecting GEOS_ERROR; safe to ignore.\n")
- class NotAGeometry(object):
- pass
- # Some other object
- self.assertRaises(TypeError, GEOSGeometry, NotAGeometry())
- # None
- self.assertRaises(TypeError, GEOSGeometry, None)
- def test01e_wkb(self):
- "Testing WKB output."
- from binascii import b2a_hex
- for g in self.geometries.hex_wkt:
- geom = fromstr(g.wkt)
- wkb = geom.wkb
- self.assertEqual(b2a_hex(wkb).upper(), g.hex)
- def test01f_create_hex(self):
- "Testing creation from HEX."
- for g in self.geometries.hex_wkt:
- geom_h = GEOSGeometry(g.hex)
- # we need to do this so decimal places get normalised
- geom_t = fromstr(g.wkt)
- self.assertEqual(geom_t.wkt, geom_h.wkt)
- def test01g_create_wkb(self):
- "Testing creation from WKB."
- from binascii import a2b_hex
- for g in self.geometries.hex_wkt:
- wkb = buffer(a2b_hex(g.hex))
- geom_h = GEOSGeometry(wkb)
- # we need to do this so decimal places get normalised
- geom_t = fromstr(g.wkt)
- self.assertEqual(geom_t.wkt, geom_h.wkt)
- def test01h_ewkt(self):
- "Testing EWKT."
- srids = (-1, 32140)
- for srid in srids:
- for p in self.geometries.polygons:
- ewkt = 'SRID=%d;%s' % (srid, p.wkt)
- poly = fromstr(ewkt)
- self.assertEqual(srid, poly.srid)
- self.assertEqual(srid, poly.shell.srid)
- self.assertEqual(srid, fromstr(poly.ewkt).srid) # Checking export
- def test01i_json(self):
- "Testing GeoJSON input/output (via GDAL)."
- if not gdal or not gdal.GEOJSON: return
- for g in self.geometries.json_geoms:
- geom = GEOSGeometry(g.wkt)
- if not hasattr(g, 'not_equal'):
- self.assertEqual(g.json, geom.json)
- self.assertEqual(g.json, geom.geojson)
- self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json))
- def test01k_fromfile(self):
- "Testing the fromfile() factory."
- from io import BytesIO
- ref_pnt = GEOSGeometry('POINT(5 23)')
- wkt_f = BytesIO()
- wkt_f.write(ref_pnt.wkt)
- wkb_f = BytesIO()
- wkb_f.write(str(ref_pnt.wkb))
- # Other tests use `fromfile()` on string filenames so those
- # aren't tested here.
- for fh in (wkt_f, wkb_f):
- fh.seek(0)
- pnt = fromfile(fh)
- self.assertEqual(ref_pnt, pnt)
- def test01k_eq(self):
- "Testing equivalence."
- p = fromstr('POINT(5 23)')
- self.assertEqual(p, p.wkt)
- self.assertNotEqual(p, 'foo')
- ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
- self.assertEqual(ls, ls.wkt)
- self.assertNotEqual(p, 'bar')
- # Error shouldn't be raise on equivalence testing with
- # an invalid type.
- for g in (p, ls):
- self.assertNotEqual(g, None)
- self.assertNotEqual(g, {'foo' : 'bar'})
- self.assertNotEqual(g, False)
- def test02a_points(self):
- "Testing Point objects."
- prev = fromstr('POINT(0 0)')
- for p in self.geometries.points:
- # Creating the point from the WKT
- pnt = fromstr(p.wkt)
- self.assertEqual(pnt.geom_type, 'Point')
- self.assertEqual(pnt.geom_typeid, 0)
- self.assertEqual(p.x, pnt.x)
- self.assertEqual(p.y, pnt.y)
- self.assertEqual(True, pnt == fromstr(p.wkt))
- self.assertEqual(False, pnt == prev)
- # Making sure that the point's X, Y components are what we expect
- self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
- self.assertAlmostEqual(p.y, pnt.tuple[1], 9)
- # Testing the third dimension, and getting the tuple arguments
- if hasattr(p, 'z'):
- self.assertEqual(True, pnt.hasz)
- self.assertEqual(p.z, pnt.z)
- self.assertEqual(p.z, pnt.tuple[2], 9)
- tup_args = (p.x, p.y, p.z)
- set_tup1 = (2.71, 3.14, 5.23)
- set_tup2 = (5.23, 2.71, 3.14)
- else:
- self.assertEqual(False, pnt.hasz)
- self.assertEqual(None, pnt.z)
- tup_args = (p.x, p.y)
- set_tup1 = (2.71, 3.14)
- set_tup2 = (3.14, 2.71)
- # Centroid operation on point should be point itself
- self.assertEqual(p.centroid, pnt.centroid.tuple)
- # Now testing the different constructors
- pnt2 = Point(tup_args) # e.g., Point((1, 2))
- pnt3 = Point(*tup_args) # e.g., Point(1, 2)
- self.assertEqual(True, pnt == pnt2)
- self.assertEqual(True, pnt == pnt3)
- # Now testing setting the x and y
- pnt.y = 3.14
- pnt.x = 2.71
- self.assertEqual(3.14, pnt.y)
- self.assertEqual(2.71, pnt.x)
- # Setting via the tuple/coords property
- pnt.tuple = set_tup1
- self.assertEqual(set_tup1, pnt.tuple)
- pnt.coords = set_tup2
- self.assertEqual(set_tup2, pnt.coords)
- prev = pnt # setting the previous geometry
- def test02b_multipoints(self):
- "Testing MultiPoint objects."
- for mp in self.geometries.multipoints:
- mpnt = fromstr(mp.wkt)
- self.assertEqual(mpnt.geom_type, 'MultiPoint')
- self.assertEqual(mpnt.geom_typeid, 4)
- self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
- self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)
- self.assertRaises(GEOSIndexError, mpnt.__getitem__, len(mpnt))
- self.assertEqual(mp.centroid, mpnt.centroid.tuple)
- self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
- for p in mpnt:
- self.assertEqual(p.geom_type, 'Point')
- self.assertEqual(p.geom_typeid, 0)
- self.assertEqual(p.empty, False)
- self.assertEqual(p.valid, True)
- def test03a_linestring(self):
- "Testing LineString objects."
- prev = fromstr('POINT(0 0)')
- for l in self.geometries.linestrings:
- ls = fromstr(l.wkt)
- self.assertEqual(ls.geom_type, 'LineString')
- self.assertEqual(ls.geom_typeid, 1)
- self.assertEqual(ls.empty, False)
- self.assertEqual(ls.ring, False)
- if hasattr(l, 'centroid'):
- self.assertEqual(l.centroid, ls.centroid.tuple)
- if hasattr(l, 'tup'):
- self.assertEqual(l.tup, ls.tuple)
- self.assertEqual(True, ls == fromstr(l.wkt))
- self.assertEqual(False, ls == prev)
- self.assertRaises(GEOSIndexError, ls.__getitem__, len(ls))
- prev = ls
- # Creating a LineString from a tuple, list, and numpy array
- self.assertEqual(ls, LineString(ls.tuple)) # tuple
- self.assertEqual(ls, LineString(*ls.tuple)) # as individual arguments
- self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple])) # as list
- self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt) # Point individual arguments
- if numpy: self.assertEqual(ls, LineString(numpy.array(ls.tuple))) # as numpy array
- def test03b_multilinestring(self):
- "Testing MultiLineString objects."
- prev = fromstr('POINT(0 0)')
- for l in self.geometries.multilinestrings:
- ml = fromstr(l.wkt)
- self.assertEqual(ml.geom_type, 'MultiLineString')
- self.assertEqual(ml.geom_typeid, 5)
- self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9)
- self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9)
- self.assertEqual(True, ml == fromstr(l.wkt))
- self.assertEqual(False, ml == prev)
- prev = ml
- for ls in ml:
- self.assertEqual(ls.geom_type, 'LineString')
- self.assertEqual(ls.geom_typeid, 1)
- self.assertEqual(ls.empty, False)
- self.assertRaises(GEOSIndexError, ml.__getitem__, len(ml))
- self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
- self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))
- def test04_linearring(self):
- "Testing LinearRing objects."
- for rr in self.geometries.linearrings:
- lr = fromstr(rr.wkt)
- self.assertEqual(lr.geom_type, 'LinearRing')
- self.assertEqual(lr.geom_typeid, 2)
- self.assertEqual(rr.n_p, len(lr))
- self.assertEqual(True, lr.valid)
- self.assertEqual(False, lr.empty)
- # Creating a LinearRing from a tuple, list, and numpy array
- self.assertEqual(lr, LinearRing(lr.tuple))
- self.assertEqual(lr, LinearRing(*lr.tuple))
- self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
- if numpy: self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))
- def test05a_polygons(self):
- "Testing Polygon objects."
- # Testing `from_bbox` class method
- bbox = (-180, -90, 180, 90)
- p = Polygon.from_bbox( bbox )
- self.assertEqual(bbox, p.extent)
- prev = fromstr('POINT(0 0)')
- for p in self.geometries.polygons:
- # Creating the Polygon, testing its properties.
- poly = fromstr(p.wkt)
- self.assertEqual(poly.geom_type, 'Polygon')
- self.assertEqual(poly.geom_typeid, 3)
- self.assertEqual(poly.empty, False)
- self.assertEqual(poly.ring, False)
- self.assertEqual(p.n_i, poly.num_interior_rings)
- self.assertEqual(p.n_i + 1, len(poly)) # Testing __len__
- self.assertEqual(p.n_p, poly.num_points)
- # Area & Centroid
- self.assertAlmostEqual(p.area, poly.area, 9)
- self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
- self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)
- # Testing the geometry equivalence
- self.assertEqual(True, poly == fromstr(p.wkt))
- self.assertEqual(False, poly == prev) # Should not be equal to previous geometry
- self.assertEqual(True, poly != prev)
- # Testing the exterior ring
- ring = poly.exterior_ring
- self.assertEqual(ring.geom_type, 'LinearRing')
- self.assertEqual(ring.geom_typeid, 2)
- if p.ext_ring_cs:
- self.assertEqual(p.ext_ring_cs, ring.tuple)
- self.assertEqual(p.ext_ring_cs, poly[0].tuple) # Testing __getitem__
- # Testing __getitem__ and __setitem__ on invalid indices
- self.assertRaises(GEOSIndexError, poly.__getitem__, len(poly))
- self.assertRaises(GEOSIndexError, poly.__setitem__, len(poly), False)
- self.assertRaises(GEOSIndexError, poly.__getitem__, -1 * len(poly) - 1)
- # Testing __iter__
- for r in poly:
- self.assertEqual(r.geom_type, 'LinearRing')
- self.assertEqual(r.geom_typeid, 2)
- # Testing polygon construction.
- self.assertRaises(TypeError, Polygon.__init__, 0, [1, 2, 3])
- self.assertRaises(TypeError, Polygon.__init__, 'foo')
- # Polygon(shell, (hole1, ... holeN))
- rings = tuple(r for r in poly)
- self.assertEqual(poly, Polygon(rings[0], rings[1:]))
- # Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
- ring_tuples = tuple(r.tuple for r in poly)
- self.assertEqual(poly, Polygon(*ring_tuples))
- # Constructing with tuples of LinearRings.
- self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
- self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)
- def test05b_multipolygons(self):
- "Testing MultiPolygon objects."
- print("\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n")
- prev = fromstr('POINT (0 0)')
- for mp in self.geometries.multipolygons:
- mpoly = fromstr(mp.wkt)
- self.assertEqual(mpoly.geom_type, 'MultiPolygon')
- self.assertEqual(mpoly.geom_typeid, 6)
- self.assertEqual(mp.valid, mpoly.valid)
- if mp.valid:
- self.assertEqual(mp.num_geom, mpoly.num_geom)
- self.assertEqual(mp.n_p, mpoly.num_coords)
- self.assertEqual(mp.num_geom, len(mpoly))
- self.assertRaises(GEOSIndexError, mpoly.__getitem__, len(mpoly))
- for p in mpoly:
- self.assertEqual(p.geom_type, 'Polygon')
- self.assertEqual(p.geom_typeid, 3)
- self.assertEqual(p.valid, True)
- self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)
- print("\nEND - expecting GEOS_NOTICE; safe to ignore.\n")
- def test06a_memory_hijinks(self):
- "Testing Geometry __del__() on rings and polygons."
- #### Memory issues with rings and polygons
- # These tests are needed to ensure sanity with writable geometries.
- # Getting a polygon with interior rings, and pulling out the interior rings
- poly = fromstr(self.geometries.polygons[1].wkt)
- ring1 = poly[0]
- ring2 = poly[1]
- # These deletes should be 'harmless' since they are done on child geometries
- del ring1
- del ring2
- ring1 = poly[0]
- ring2 = poly[1]
- # Deleting the polygon
- del poly
- # Access to these rings is OK since they are clones.
- s1, s2 = str(ring1), str(ring2)
- def test08_coord_seq(self):
- "Testing Coordinate Sequence objects."
- for p in self.geometries.polygons:
- if p.ext_ring_cs:
- # Constructing the polygon and getting the coordinate sequence
- poly = fromstr(p.wkt)
- cs = poly.exterior_ring.coord_seq
- self.assertEqual(p.ext_ring_cs, cs.tuple) # done in the Polygon test too.
- self.assertEqual(len(p.ext_ring_cs), len(cs)) # Making sure __len__ works
- # Checks __getitem__ and __setitem__
- for i in xrange(len(p.ext_ring_cs)):
- c1 = p.ext_ring_cs[i] # Expected value
- c2 = cs[i] # Value from coordseq
- self.assertEqual(c1, c2)
- # Constructing the test value to set the coordinate sequence with
- if len(c1) == 2: tset = (5, 23)
- else: tset = (5, 23, 8)
- cs[i] = tset
- # Making sure every set point matches what we expect
- for j in range(len(tset)):
- cs[i] = tset
- self.assertEqual(tset[j], cs[i][j])
- def test09_relate_pattern(self):
- "Testing relate() and relate_pattern()."
- g = fromstr('POINT (0 0)')
- self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo')
- for rg in self.geometries.relate_geoms:
- a = fromstr(rg.wkt_a)
- b = fromstr(rg.wkt_b)
- self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
- self.assertEqual(rg.pattern, a.relate(b))
- def test10_intersection(self):
- "Testing intersects() and intersection()."
- for i in xrange(len(self.geometries.topology_geoms)):
- a = fromstr(self.geometries.topology_geoms[i].wkt_a)
- b = fromstr(self.geometries.topology_geoms[i].wkt_b)
- i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
- self.assertEqual(True, a.intersects(b))
- i2 = a.intersection(b)
- self.assertEqual(i1, i2)
- self.assertEqual(i1, a & b) # __and__ is intersection operator
- a &= b # testing __iand__
- self.assertEqual(i1, a)
- def test11_union(self):
- "Testing union()."
- for i in xrange(len(self.geometries.topology_geoms)):
- a = fromstr(self.geometries.topology_geoms[i].wkt_a)
- b = fromstr(self.geometries.topology_geoms[i].wkt_b)
- u1 = fromstr(self.geometries.union_geoms[i].wkt)
- u2 = a.union(b)
- self.assertEqual(u1, u2)
- self.assertEqual(u1, a | b) # __or__ is union operator
- a |= b # testing __ior__
- self.assertEqual(u1, a)
- def test12_difference(self):
- "Testing difference()."
- for i in xrange(len(self.geometries.topology_geoms)):
- a = fromstr(self.geometries.topology_geoms[i].wkt_a)
- b = fromstr(self.geometries.topology_geoms[i].wkt_b)
- d1 = fromstr(self.geometries.diff_geoms[i].wkt)
- d2 = a.difference(b)
- self.assertEqual(d1, d2)
- self.assertEqual(d1, a - b) # __sub__ is difference operator
- a -= b # testing __isub__
- self.assertEqual(d1, a)
- def test13_symdifference(self):
- "Testing sym_difference()."
- for i in xrange(len(self.geometries.topology_geoms)):
- a = fromstr(self.geometries.topology_geoms[i].wkt_a)
- b = fromstr(self.geometries.topology_geoms[i].wkt_b)
- d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
- d2 = a.sym_difference(b)
- self.assertEqual(d1, d2)
- self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator
- a ^= b # testing __ixor__
- self.assertEqual(d1, a)
- def test14_buffer(self):
- "Testing buffer()."
- for bg in self.geometries.buffer_geoms:
- g = fromstr(bg.wkt)
- # The buffer we expect
- exp_buf = fromstr(bg.buffer_wkt)
- quadsegs = bg.quadsegs
- width = bg.width
- # Can't use a floating-point for the number of quadsegs.
- self.assertRaises(ctypes.ArgumentError, g.buffer, width, float(quadsegs))
- # Constructing our buffer
- buf = g.buffer(width, quadsegs)
- self.assertEqual(exp_buf.num_coords, buf.num_coords)
- self.assertEqual(len(exp_buf), len(buf))
- # Now assuring that each point in the buffer is almost equal
- for j in xrange(len(exp_buf)):
- exp_ring = exp_buf[j]
- buf_ring = buf[j]
- self.assertEqual(len(exp_ring), len(buf_ring))
- for k in xrange(len(exp_ring)):
- # Asserting the X, Y of each point are almost equal (due to floating point imprecision)
- self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
- self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)
- def test15_srid(self):
- "Testing the SRID property and keyword."
- # Testing SRID keyword on Point
- pnt = Point(5, 23, srid=4326)
- self.assertEqual(4326, pnt.srid)
- pnt.srid = 3084
- self.assertEqual(3084, pnt.srid)
- self.assertRaises(ctypes.ArgumentError, pnt.set_srid, '4326')
- # Testing SRID keyword on fromstr(), and on Polygon rings.
- poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
- self.assertEqual(4269, poly.srid)
- for ring in poly: self.assertEqual(4269, ring.srid)
- poly.srid = 4326
- self.assertEqual(4326, poly.shell.srid)
- # Testing SRID keyword on GeometryCollection
- gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
- self.assertEqual(32021, gc.srid)
- for i in range(len(gc)): self.assertEqual(32021, gc[i].srid)
- # GEOS may get the SRID from HEXEWKB
- # 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
- # using `SELECT GeomFromText('POINT (5 23)', 4326);`.
- hex = '0101000020E610000000000000000014400000000000003740'
- p1 = fromstr(hex)
- self.assertEqual(4326, p1.srid)
- # In GEOS 3.0.0rc1-4 when the EWKB and/or HEXEWKB is exported,
- # the SRID information is lost and set to -1 -- this is not a
- # problem on the 3.0.0 version (another reason to upgrade).
- exp_srid = self.null_srid
- p2 = fromstr(p1.hex)
- self.assertEqual(exp_srid, p2.srid)
- p3 = fromstr(p1.hex, srid=-1) # -1 is intended.
- self.assertEqual(-1, p3.srid)
- def test16_mutable_geometries(self):
- "Testing the mutability of Polygons and Geometry Collections."
- ### Testing the mutability of Polygons ###
- for p in self.geometries.polygons:
- poly = fromstr(p.wkt)
- # Should only be able to use __setitem__ with LinearRing geometries.
- self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2)))
- # Constructing the new shell by adding 500 to every point in the old shell.
- shell_tup = poly.shell.tuple
- new_coords = []
- for point in shell_tup: new_coords.append((point[0] + 500., point[1] + 500.))
- new_shell = LinearRing(*tuple(new_coords))
- # Assigning polygon's exterior ring w/the new shell
- poly.exterior_ring = new_shell
- s = str(new_shell) # new shell is still accessible
- self.assertEqual(poly.exterior_ring, new_shell)
- self.assertEqual(poly[0], new_shell)
- ### Testing the mutability of Geometry Collections
- for tg in self.geometries.multipoints:
- mp = fromstr(tg.wkt)
- for i in range(len(mp)):
- # Creating a random point.
- pnt = mp[i]
- new = Point(random.randint(1, 100), random.randint(1, 100))
- # Testing the assignment
- mp[i] = new
- s = str(new) # what was used for the assignment is still accessible
- self.assertEqual(mp[i], new)
- self.assertEqual(mp[i].wkt, new.wkt)
- self.assertNotEqual(pnt, mp[i])
- # MultiPolygons involve much more memory management because each
- # Polygon w/in the collection has its own rings.
- for tg in self.geometries.multipolygons:
- mpoly = fromstr(tg.wkt)
- for i in xrange(len(mpoly)):
- poly = mpoly[i]
- old_poly = mpoly[i]
- # Offsetting the each ring in the polygon by 500.
- for j in xrange(len(poly)):
- r = poly[j]
- for k in xrange(len(r)): r[k] = (r[k][0] + 500., r[k][1] + 500.)
- poly[j] = r
- self.assertNotEqual(mpoly[i], poly)
- # Testing the assignment
- mpoly[i] = poly
- s = str(poly) # Still accessible
- self.assertEqual(mpoly[i], poly)
- self.assertNotEqual(mpoly[i], old_poly)
- # Extreme (!!) __setitem__ -- no longer works, have to detect
- # in the first object that __setitem__ is called in the subsequent
- # objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
- #mpoly[0][0][0] = (3.14, 2.71)
- #self.assertEqual((3.14, 2.71), mpoly[0][0][0])
- # Doing it more slowly..
- #self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
- #del mpoly
- def test17_threed(self):
- "Testing three-dimensional geometries."
- # Testing a 3D Point
- pnt = Point(2, 3, 8)
- self.assertEqual((2.,3.,8.), pnt.coords)
- self.assertRaises(TypeError, pnt.set_coords, (1.,2.))
- pnt.coords = (1.,2.,3.)
- self.assertEqual((1.,2.,3.), pnt.coords)
- # Testing a 3D LineString
- ls = LineString((2., 3., 8.), (50., 250., -117.))
- self.assertEqual(((2.,3.,8.), (50.,250.,-117.)), ls.tuple)
- self.assertRaises(TypeError, ls.__setitem__, 0, (1.,2.))
- ls[0] = (1.,2.,3.)
- self.assertEqual((1.,2.,3.), ls[0])
- def test18_distance(self):
- "Testing the distance() function."
- # Distance to self should be 0.
- pnt = Point(0, 0)
- self.assertEqual(0.0, pnt.distance(Point(0, 0)))
- # Distance should be 1
- self.assertEqual(1.0, pnt.distance(Point(0, 1)))
- # Distance should be ~ sqrt(2)
- self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)
- # Distances are from the closest vertex in each geometry --
- # should be 3 (distance from (2, 2) to (5, 2)).
- ls1 = LineString((0, 0), (1, 1), (2, 2))
- ls2 = LineString((5, 2), (6, 1), (7, 0))
- self.assertEqual(3, ls1.distance(ls2))
- def test19_length(self):
- "Testing the length property."
- # Points have 0 length.
- pnt = Point(0, 0)
- self.assertEqual(0.0, pnt.length)
- # Should be ~ sqrt(2)
- ls = LineString((0, 0), (1, 1))
- self.assertAlmostEqual(1.41421356237, ls.length, 11)
- # Should be circumfrence of Polygon
- poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
- self.assertEqual(4.0, poly.length)
- # Should be sum of each element's length in collection.
- mpoly = MultiPolygon(poly.clone(), poly)
- self.assertEqual(8.0, mpoly.length)
- def test20a_emptyCollections(self):
- "Testing empty geometries and collections."
- gc1 = GeometryCollection([])
- gc2 = fromstr('GEOMETRYCOLLECTION EMPTY')
- pnt = fromstr('POINT EMPTY')
- ls = fromstr('LINESTRING EMPTY')
- poly = fromstr('POLYGON EMPTY')
- mls = fromstr('MULTILINESTRING EMPTY')
- mpoly1 = fromstr('MULTIPOLYGON EMPTY')
- mpoly2 = MultiPolygon(())
- for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]:
- self.assertEqual(True, g.empty)
- # Testing len() and num_geom.
- if isinstance(g, Polygon):
- self.assertEqual(1, len(g)) # Has one empty linear ring
- self.assertEqual(1, g.num_geom)
- self.assertEqual(0, len(g[0]))
- elif isinstance(g, (Point, LineString)):
- self.assertEqual(1, g.num_geom)
- self.assertEqual(0, len(g))
- else:
- self.assertEqual(0, g.num_geom)
- self.assertEqual(0, len(g))
- # Testing __getitem__ (doesn't work on Point or Polygon)
- if isinstance(g, Point):
- self.assertRaises(GEOSIndexError, g.get_x)
- elif isinstance(g, Polygon):
- lr = g.shell
- self.assertEqual('LINEARRING EMPTY', lr.wkt)
- self.assertEqual(0, len(lr))
- self.assertEqual(True, lr.empty)
- self.assertRaises(GEOSIndexError, lr.__getitem__, 0)
- else:
- self.assertRaises(GEOSIndexError, g.__getitem__, 0)
- def test20b_collections_of_collections(self):
- "Testing GeometryCollection handling of other collections."
- # Creating a GeometryCollection WKT string composed of other
- # collections and polygons.
- coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
- coll.extend([mls.wkt for mls in self.geometries.multilinestrings])
- coll.extend([p.wkt for p in self.geometries.polygons])
- coll.extend([mp.wkt for mp in self.geometries.multipoints])
- gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll)
- # Should construct ok from WKT
- gc1 = GEOSGeometry(gc_wkt)
- # Should also construct ok from individual geometry arguments.
- gc2 = GeometryCollection(*tuple(g for g in gc1))
- # And, they should be equal.
- self.assertEqual(gc1, gc2)
- def test21_test_gdal(self):
- "Testing `ogr` and `srs` properties."
- if not gdal.HAS_GDAL: return
- g1 = fromstr('POINT(5 23)')
- self.assertEqual(True, isinstance(g1.ogr, gdal.OGRGeometry))
- self.assertEqual(g1.srs, None)
- g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
- self.assertEqual(True, isinstance(g2.ogr, gdal.OGRGeometry))
- self.assertEqual(True, isinstance(g2.srs, gdal.SpatialReference))
- self.assertEqual(g2.hex, g2.ogr.hex)
- self.assertEqual('WGS 84', g2.srs.name)
- def test22_copy(self):
- "Testing use with the Python `copy` module."
- import copy
- poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
- cpy1 = copy.copy(poly)
- cpy2 = copy.deepcopy(poly)
- self.assertNotEqual(poly._ptr, cpy1._ptr)
- self.assertNotEqual(poly._ptr, cpy2._ptr)
- def test23_transform(self):
- "Testing `transform` method."
- if not gdal.HAS_GDAL: return
- orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)
- # Using a srid, a SpatialReference object, and a CoordTransform object
- # for transformations.
- t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
- t1.transform(trans.srid)
- t2.transform(gdal.SpatialReference('EPSG:2774'))
- ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774))
- t3.transform(ct)
- # Testing use of the `clone` keyword.
- k1 = orig.clone()
- k2 = k1.transform(trans.srid, clone=True)
- self.assertEqual(k1, orig)
- self.assertNotEqual(k1, k2)
- prec = 3
- for p in (t1, t2, t3, k2):
- self.assertAlmostEqual(trans.x, p.x, prec)
- self.assertAlmostEqual(trans.y, p.y, prec)
- def test23_transform_noop(self):
- """ Testing `transform` method (SRID match) """
- # transform() should no-op if source & dest SRIDs match,
- # regardless of whether GDAL is available.
- if gdal.HAS_GDAL:
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- gt = g.tuple
- g.transform(4326)
- self.assertEqual(g.tuple, gt)
- self.assertEqual(g.srid, 4326)
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- g1 = g.transform(4326, clone=True)
- self.assertEqual(g1.tuple, g.tuple)
- self.assertEqual(g1.srid, 4326)
- self.assertTrue(g1 is not g, "Clone didn't happen")
- old_has_gdal = gdal.HAS_GDAL
- try:
- gdal.HAS_GDAL = False
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- gt = g.tuple
- g.transform(4326)
- self.assertEqual(g.tuple, gt)
- self.assertEqual(g.srid, 4326)
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- g1 = g.transform(4326, clone=True)
- self.assertEqual(g1.tuple, g.tuple)
- self.assertEqual(g1.srid, 4326)
- self.assertTrue(g1 is not g, "Clone didn't happen")
- finally:
- gdal.HAS_GDAL = old_has_gdal
- def test23_transform_nosrid(self):
- """ Testing `transform` method (no SRID or negative SRID) """
- g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
- self.assertRaises(GEOSException, g.transform, 2774)
- g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
- self.assertRaises(GEOSException, g.transform, 2774, clone=True)
- g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
- self.assertRaises(GEOSException, g.transform, 2774)
- g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
- self.assertRaises(GEOSException, g.transform, 2774, clone=True)
- def test23_transform_nogdal(self):
- """ Testing `transform` method (GDAL not available) """
- old_has_gdal = gdal.HAS_GDAL
- try:
- gdal.HAS_GDAL = False
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- self.assertRaises(GEOSException, g.transform, 2774)
- g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
- self.assertRaises(GEOSException, g.transform, 2774, clone=True)
- finally:
- gdal.HAS_GDAL = old_has_gdal
- def test24_extent(self):
- "Testing `extent` method."
- # The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
- mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
- self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
- pnt = Point(5.23, 17.8)
- # Extent of points is just the point itself repeated.
- self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
- # Testing on the 'real world' Polygon.
- poly = fromstr(self.geometries.polygons[3].wkt)
- ring = poly.shell
- x, y = ring.x, ring.y
- xmin, ymin = min(x), min(y)
- xmax, ymax = max(x), max(y)
- self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)
- def test25_pickle(self):
- "Testing pickling and unpickling support."
- # Using both pickle and cPickle -- just 'cause.
- import pickle, cPickle
- # Creating a list of test geometries for pickling,
- # and setting the SRID on some of them.
- def get_geoms(lst, srid=None):
- return [GEOSGeometry(tg.wkt, srid) for tg in lst]
- tgeoms = get_geoms(self.geometries.points)
- tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
- tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
- tgeoms.extend(get_geoms(self.geometries.multipolygons, 900913))
- # The SRID won't be exported in GEOS 3.0 release candidates.
- no_srid = self.null_srid == -1
- for geom in tgeoms:
- s1, s2 = cPickle.dumps(geom), pickle.dumps(geom)
- g1, g2 = cPickle.loads(s1), pickle.loads(s2)
- for tmpg in (g1, g2):
- self.assertEqual(geom, tmpg)
- if not no_srid: self.assertEqual(geom.srid, tmpg.srid)
- def test26_prepared(self):
- "Testing PreparedGeometry support."
- if not GEOS_PREPARE: return
- # Creating a simple multipolygon and getting a prepared version.
- mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))')
- prep = mpoly.prepared
- # A set of test points.
- pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
- covers = [True, True, False] # No `covers` op for regular GEOS geoms.
- for pnt, c in zip(pnts, covers):
- # Results should be the same (but faster)
- self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
- self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
- self.assertEqual(c, prep.covers(pnt))
- def test26_line_merge(self):
- "Testing line merge support"
- ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'),
- fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'),
- )
- ref_merged = (fromstr('LINESTRING(1 1, 3 3)'),
- fromstr('LINESTRING (1 1, 3 3, 4 2)'),
- )
- for geom, merged in zip(ref_geoms, ref_merged):
- self.assertEqual(merged, geom.merged)
- def test27_valid_reason(self):
- "Testing IsValidReason support"
- # Skipping tests if GEOS < v3.1.
- if not GEOS_PREPARE: return
- g = GEOSGeometry("POINT(0 0)")
- self.assertTrue(g.valid)
- self.assertTrue(isinstance(g.valid_reason, basestring))
- self.assertEqual(g.valid_reason, "Valid Geometry")
- print("\nBEGIN - expecting GEOS_NOTICE; safe to ignore.\n")
- g = GEOSGeometry("LINESTRING(0 0, 0 0)")
- self.assertTrue(not g.valid)
- self.assertTrue(isinstance(g.valid_reason, basestring))
- self.assertTrue(g.valid_reason.startswith("Too few points in geometry component"))
- print("\nEND - expecting GEOS_NOTICE; safe to ignore.\n")
- def test28_geos_version(self):
- "Testing the GEOS version regular expression."
- from django.contrib.gis.geos.libgeos import version_regex
- versions = [ ('3.0.0rc4-CAPI-1.3.3', '3.0.0'),
- ('3.0.0-CAPI-1.4.1', '3.0.0'),
- ('3.4.0dev-CAPI-1.8.0', '3.4.0') ]
- for v, expected in versions:
- m = version_regex.match(v)
- self.assertTrue(m)
- self.assertEqual(m.group('version'), expected)
- def suite():
- s = unittest.TestSuite()
- s.addTest(unittest.makeSuite(GEOSTest))
- return s
- def run(verbosity=2):
- unittest.TextTestRunner(verbosity=verbosity).run(suite())
|