expressions.txt 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216
  1. =================
  2. Query Expressions
  3. =================
  4. .. currentmodule:: django.db.models
  5. Query expressions describe a value or a computation that can be used as part of
  6. an update, create, filter, order by, annotation, or aggregate. When an
  7. expression outputs a boolean value, it may be used directly in filters. There
  8. are a number of built-in expressions (documented below) that can be used to
  9. help you write queries. Expressions can be combined, or in some cases nested,
  10. to form more complex computations.
  11. Supported arithmetic
  12. ====================
  13. Django supports negation, addition, subtraction, multiplication, division,
  14. modulo arithmetic, and the power operator on query expressions, using Python
  15. constants, variables, and even other expressions.
  16. Some examples
  17. =============
  18. .. code-block:: python
  19. from django.db.models import Count, F, Value
  20. from django.db.models.functions import Length, Upper
  21. # Find companies that have more employees than chairs.
  22. Company.objects.filter(num_employees__gt=F('num_chairs'))
  23. # Find companies that have at least twice as many employees
  24. # as chairs. Both the querysets below are equivalent.
  25. Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
  26. Company.objects.filter(
  27. num_employees__gt=F('num_chairs') + F('num_chairs'))
  28. # How many chairs are needed for each company to seat all employees?
  29. >>> company = Company.objects.filter(
  30. ... num_employees__gt=F('num_chairs')).annotate(
  31. ... chairs_needed=F('num_employees') - F('num_chairs')).first()
  32. >>> company.num_employees
  33. 120
  34. >>> company.num_chairs
  35. 50
  36. >>> company.chairs_needed
  37. 70
  38. # Create a new company using expressions.
  39. >>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
  40. # Be sure to refresh it if you need to access the field.
  41. >>> company.refresh_from_db()
  42. >>> company.ticker
  43. 'GOOG'
  44. # Annotate models with an aggregated value. Both forms
  45. # below are equivalent.
  46. Company.objects.annotate(num_products=Count('products'))
  47. Company.objects.annotate(num_products=Count(F('products')))
  48. # Aggregates can contain complex computations also
  49. Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
  50. # Expressions can also be used in order_by(), either directly
  51. Company.objects.order_by(Length('name').asc())
  52. Company.objects.order_by(Length('name').desc())
  53. # or using the double underscore lookup syntax.
  54. from django.db.models import CharField
  55. from django.db.models.functions import Length
  56. CharField.register_lookup(Length)
  57. Company.objects.order_by('name__length')
  58. # Boolean expression can be used directly in filters.
  59. from django.db.models import Exists
  60. Company.objects.filter(
  61. Exists(Employee.objects.filter(company=OuterRef('pk'), salary__gt=10))
  62. )
  63. Built-in Expressions
  64. ====================
  65. .. note::
  66. These expressions are defined in ``django.db.models.expressions`` and
  67. ``django.db.models.aggregates``, but for convenience they're available and
  68. usually imported from :mod:`django.db.models`.
  69. ``F()`` expressions
  70. -------------------
  71. .. class:: F
  72. An ``F()`` object represents the value of a model field, transformed value of a
  73. model field, or annotated column. It makes it possible to refer to model field
  74. values and perform database operations using them without actually having to
  75. pull them out of the database into Python memory.
  76. Instead, Django uses the ``F()`` object to generate an SQL expression that
  77. describes the required operation at the database level.
  78. Let's try this with an example. Normally, one might do something like this::
  79. # Tintin filed a news story!
  80. reporter = Reporters.objects.get(name='Tintin')
  81. reporter.stories_filed += 1
  82. reporter.save()
  83. Here, we have pulled the value of ``reporter.stories_filed`` from the database
  84. into memory and manipulated it using familiar Python operators, and then saved
  85. the object back to the database. But instead we could also have done::
  86. from django.db.models import F
  87. reporter = Reporters.objects.get(name='Tintin')
  88. reporter.stories_filed = F('stories_filed') + 1
  89. reporter.save()
  90. Although ``reporter.stories_filed = F('stories_filed') + 1`` looks like a
  91. normal Python assignment of value to an instance attribute, in fact it's an SQL
  92. construct describing an operation on the database.
  93. When Django encounters an instance of ``F()``, it overrides the standard Python
  94. operators to create an encapsulated SQL expression; in this case, one which
  95. instructs the database to increment the database field represented by
  96. ``reporter.stories_filed``.
  97. Whatever value is or was on ``reporter.stories_filed``, Python never gets to
  98. know about it - it is dealt with entirely by the database. All Python does,
  99. through Django's ``F()`` class, is create the SQL syntax to refer to the field
  100. and describe the operation.
  101. To access the new value saved this way, the object must be reloaded::
  102. reporter = Reporters.objects.get(pk=reporter.pk)
  103. # Or, more succinctly:
  104. reporter.refresh_from_db()
  105. As well as being used in operations on single instances as above, ``F()`` can
  106. be used on ``QuerySets`` of object instances, with ``update()``. This reduces
  107. the two queries we were using above - the ``get()`` and the
  108. :meth:`~Model.save()` - to just one::
  109. reporter = Reporters.objects.filter(name='Tintin')
  110. reporter.update(stories_filed=F('stories_filed') + 1)
  111. We can also use :meth:`~django.db.models.query.QuerySet.update()` to increment
  112. the field value on multiple objects - which could be very much faster than
  113. pulling them all into Python from the database, looping over them, incrementing
  114. the field value of each one, and saving each one back to the database::
  115. Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
  116. ``F()`` therefore can offer performance advantages by:
  117. * getting the database, rather than Python, to do work
  118. * reducing the number of queries some operations require
  119. .. versionchanged:: 3.2
  120. Support for transforms of the field was added.
  121. .. _avoiding-race-conditions-using-f:
  122. Avoiding race conditions using ``F()``
  123. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  124. Another useful benefit of ``F()`` is that having the database - rather than
  125. Python - update a field's value avoids a *race condition*.
  126. If two Python threads execute the code in the first example above, one thread
  127. could retrieve, increment, and save a field's value after the other has
  128. retrieved it from the database. The value that the second thread saves will be
  129. based on the original value; the work of the first thread will be lost.
  130. If the database is responsible for updating the field, the process is more
  131. robust: it will only ever update the field based on the value of the field in
  132. the database when the :meth:`~Model.save()` or ``update()`` is executed, rather
  133. than based on its value when the instance was retrieved.
  134. ``F()`` assignments persist after ``Model.save()``
  135. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  136. ``F()`` objects assigned to model fields persist after saving the model
  137. instance and will be applied on each :meth:`~Model.save()`. For example::
  138. reporter = Reporters.objects.get(name='Tintin')
  139. reporter.stories_filed = F('stories_filed') + 1
  140. reporter.save()
  141. reporter.name = 'Tintin Jr.'
  142. reporter.save()
  143. ``stories_filed`` will be updated twice in this case. If it's initially ``1``,
  144. the final value will be ``3``. This persistence can be avoided by reloading the
  145. model object after saving it, for example, by using
  146. :meth:`~Model.refresh_from_db()`.
  147. Using ``F()`` in filters
  148. ~~~~~~~~~~~~~~~~~~~~~~~~
  149. ``F()`` is also very useful in ``QuerySet`` filters, where they make it
  150. possible to filter a set of objects against criteria based on their field
  151. values, rather than on Python values.
  152. This is documented in :ref:`using F() expressions in queries
  153. <using-f-expressions-in-filters>`.
  154. .. _using-f-with-annotations:
  155. Using ``F()`` with annotations
  156. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  157. ``F()`` can be used to create dynamic fields on your models by combining
  158. different fields with arithmetic::
  159. company = Company.objects.annotate(
  160. chairs_needed=F('num_employees') - F('num_chairs'))
  161. If the fields that you're combining are of different types you'll need
  162. to tell Django what kind of field will be returned. Since ``F()`` does not
  163. directly support ``output_field`` you will need to wrap the expression with
  164. :class:`ExpressionWrapper`::
  165. from django.db.models import DateTimeField, ExpressionWrapper, F
  166. Ticket.objects.annotate(
  167. expires=ExpressionWrapper(
  168. F('active_at') + F('duration'), output_field=DateTimeField()))
  169. When referencing relational fields such as ``ForeignKey``, ``F()`` returns the
  170. primary key value rather than a model instance::
  171. >> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
  172. >> car.manufacturer
  173. <Manufacturer: Toyota>
  174. >> car.built_by
  175. 3
  176. .. _using-f-to-sort-null-values:
  177. Using ``F()`` to sort null values
  178. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  179. Use ``F()`` and the ``nulls_first`` or ``nulls_last`` keyword argument to
  180. :meth:`.Expression.asc` or :meth:`~.Expression.desc` to control the ordering of
  181. a field's null values. By default, the ordering depends on your database.
  182. For example, to sort companies that haven't been contacted (``last_contacted``
  183. is null) after companies that have been contacted::
  184. from django.db.models import F
  185. Company.objects.order_by(F('last_contacted').desc(nulls_last=True))
  186. .. _func-expressions:
  187. ``Func()`` expressions
  188. ----------------------
  189. ``Func()`` expressions are the base type of all expressions that involve
  190. database functions like ``COALESCE`` and ``LOWER``, or aggregates like ``SUM``.
  191. They can be used directly::
  192. from django.db.models import F, Func
  193. queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
  194. or they can be used to build a library of database functions::
  195. class Lower(Func):
  196. function = 'LOWER'
  197. queryset.annotate(field_lower=Lower('field'))
  198. But both cases will result in a queryset where each model is annotated with an
  199. extra attribute ``field_lower`` produced, roughly, from the following SQL:
  200. .. code-block:: sql
  201. SELECT
  202. ...
  203. LOWER("db_table"."field") as "field_lower"
  204. See :doc:`database-functions` for a list of built-in database functions.
  205. The ``Func`` API is as follows:
  206. .. class:: Func(*expressions, **extra)
  207. .. attribute:: function
  208. A class attribute describing the function that will be generated.
  209. Specifically, the ``function`` will be interpolated as the ``function``
  210. placeholder within :attr:`template`. Defaults to ``None``.
  211. .. attribute:: template
  212. A class attribute, as a format string, that describes the SQL that is
  213. generated for this function. Defaults to
  214. ``'%(function)s(%(expressions)s)'``.
  215. If you're constructing SQL like ``strftime('%W', 'date')`` and need a
  216. literal ``%`` character in the query, quadruple it (``%%%%``) in the
  217. ``template`` attribute because the string is interpolated twice: once
  218. during the template interpolation in ``as_sql()`` and once in the SQL
  219. interpolation with the query parameters in the database cursor.
  220. .. attribute:: arg_joiner
  221. A class attribute that denotes the character used to join the list of
  222. ``expressions`` together. Defaults to ``', '``.
  223. .. attribute:: arity
  224. A class attribute that denotes the number of arguments the function
  225. accepts. If this attribute is set and the function is called with a
  226. different number of expressions, ``TypeError`` will be raised. Defaults
  227. to ``None``.
  228. .. method:: as_sql(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)
  229. Generates the SQL fragment for the database function. Returns a tuple
  230. ``(sql, params)``, where ``sql`` is the SQL string, and ``params`` is
  231. the list or tuple of query parameters.
  232. The ``as_vendor()`` methods should use the ``function``, ``template``,
  233. ``arg_joiner``, and any other ``**extra_context`` parameters to
  234. customize the SQL as needed. For example:
  235. .. code-block:: python
  236. :caption: django/db/models/functions.py
  237. class ConcatPair(Func):
  238. ...
  239. function = 'CONCAT'
  240. ...
  241. def as_mysql(self, compiler, connection, **extra_context):
  242. return super().as_sql(
  243. compiler, connection,
  244. function='CONCAT_WS',
  245. template="%(function)s('', %(expressions)s)",
  246. **extra_context
  247. )
  248. To avoid an SQL injection vulnerability, ``extra_context`` :ref:`must
  249. not contain untrusted user input <avoiding-sql-injection-in-query-expressions>`
  250. as these values are interpolated into the SQL string rather than passed
  251. as query parameters, where the database driver would escape them.
  252. The ``*expressions`` argument is a list of positional expressions that the
  253. function will be applied to. The expressions will be converted to strings,
  254. joined together with ``arg_joiner``, and then interpolated into the ``template``
  255. as the ``expressions`` placeholder.
  256. Positional arguments can be expressions or Python values. Strings are
  257. assumed to be column references and will be wrapped in ``F()`` expressions
  258. while other values will be wrapped in ``Value()`` expressions.
  259. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  260. into the ``template`` attribute. To avoid an SQL injection vulnerability,
  261. ``extra`` :ref:`must not contain untrusted user input
  262. <avoiding-sql-injection-in-query-expressions>` as these values are interpolated
  263. into the SQL string rather than passed as query parameters, where the database
  264. driver would escape them.
  265. The ``function``, ``template``, and ``arg_joiner`` keywords can be used to
  266. replace the attributes of the same name without having to define your own
  267. class. ``output_field`` can be used to define the expected return type.
  268. ``Aggregate()`` expressions
  269. ---------------------------
  270. An aggregate expression is a special case of a :ref:`Func() expression
  271. <func-expressions>` that informs the query that a ``GROUP BY`` clause
  272. is required. All of the :ref:`aggregate functions <aggregation-functions>`,
  273. like ``Sum()`` and ``Count()``, inherit from ``Aggregate()``.
  274. Since ``Aggregate``\s are expressions and wrap expressions, you can represent
  275. some complex computations::
  276. from django.db.models import Count
  277. Company.objects.annotate(
  278. managers_required=(Count('num_employees') / 4) + Count('num_managers'))
  279. The ``Aggregate`` API is as follows:
  280. .. class:: Aggregate(*expressions, output_field=None, distinct=False, filter=None, **extra)
  281. .. attribute:: template
  282. A class attribute, as a format string, that describes the SQL that is
  283. generated for this aggregate. Defaults to
  284. ``'%(function)s(%(distinct)s%(expressions)s)'``.
  285. .. attribute:: function
  286. A class attribute describing the aggregate function that will be
  287. generated. Specifically, the ``function`` will be interpolated as the
  288. ``function`` placeholder within :attr:`template`. Defaults to ``None``.
  289. .. attribute:: window_compatible
  290. Defaults to ``True`` since most aggregate functions can be used as the
  291. source expression in :class:`~django.db.models.expressions.Window`.
  292. .. attribute:: allow_distinct
  293. A class attribute determining whether or not this aggregate function
  294. allows passing a ``distinct`` keyword argument. If set to ``False``
  295. (default), ``TypeError`` is raised if ``distinct=True`` is passed.
  296. The ``expressions`` positional arguments can include expressions, transforms of
  297. the model field, or the names of model fields. They will be converted to a
  298. string and used as the ``expressions`` placeholder within the ``template``.
  299. The ``output_field`` argument requires a model field instance, like
  300. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  301. after it's retrieved from the database. Usually no arguments are needed when
  302. instantiating the model field as any arguments relating to data validation
  303. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  304. output value.
  305. Note that ``output_field`` is only required when Django is unable to determine
  306. what field type the result should be. Complex expressions that mix field types
  307. should define the desired ``output_field``. For example, adding an
  308. ``IntegerField()`` and a ``FloatField()`` together should probably have
  309. ``output_field=FloatField()`` defined.
  310. The ``distinct`` argument determines whether or not the aggregate function
  311. should be invoked for each distinct value of ``expressions`` (or set of
  312. values, for multiple ``expressions``). The argument is only supported on
  313. aggregates that have :attr:`~Aggregate.allow_distinct` set to ``True``.
  314. The ``filter`` argument takes a :class:`Q object <django.db.models.Q>` that's
  315. used to filter the rows that are aggregated. See :ref:`conditional-aggregation`
  316. and :ref:`filtering-on-annotations` for example usage.
  317. The ``**extra`` kwargs are ``key=value`` pairs that can be interpolated
  318. into the ``template`` attribute.
  319. .. versionchanged:: 3.2
  320. Support for transforms of the field was added.
  321. Creating your own Aggregate Functions
  322. -------------------------------------
  323. You can create your own aggregate functions, too. At a minimum, you need to
  324. define ``function``, but you can also completely customize the SQL that is
  325. generated. Here's a brief example::
  326. from django.db.models import Aggregate
  327. class Sum(Aggregate):
  328. # Supports SUM(ALL field).
  329. function = 'SUM'
  330. template = '%(function)s(%(all_values)s%(expressions)s)'
  331. allow_distinct = False
  332. def __init__(self, expression, all_values=False, **extra):
  333. super().__init__(
  334. expression,
  335. all_values='ALL ' if all_values else '',
  336. **extra
  337. )
  338. ``Value()`` expressions
  339. -----------------------
  340. .. class:: Value(value, output_field=None)
  341. A ``Value()`` object represents the smallest possible component of an
  342. expression: a simple value. When you need to represent the value of an integer,
  343. boolean, or string within an expression, you can wrap that value within a
  344. ``Value()``.
  345. You will rarely need to use ``Value()`` directly. When you write the expression
  346. ``F('field') + 1``, Django implicitly wraps the ``1`` in a ``Value()``,
  347. allowing simple values to be used in more complex expressions. You will need to
  348. use ``Value()`` when you want to pass a string to an expression. Most
  349. expressions interpret a string argument as the name of a field, like
  350. ``Lower('name')``.
  351. The ``value`` argument describes the value to be included in the expression,
  352. such as ``1``, ``True``, or ``None``. Django knows how to convert these Python
  353. values into their corresponding database type.
  354. The ``output_field`` argument should be a model field instance, like
  355. ``IntegerField()`` or ``BooleanField()``, into which Django will load the value
  356. after it's retrieved from the database. Usually no arguments are needed when
  357. instantiating the model field as any arguments relating to data validation
  358. (``max_length``, ``max_digits``, etc.) will not be enforced on the expression's
  359. output value. If no ``output_field`` is specified it will be tentatively
  360. inferred from the :py:class:`type` of the provided ``value``, if possible. For
  361. example, passing an instance of :py:class:`datetime.datetime` as ``value``
  362. would default ``output_field`` to :class:`~django.db.models.DateTimeField`.
  363. .. versionchanged:: 3.2
  364. Support for inferring a default ``output_field`` from the type of ``value``
  365. was added.
  366. ``ExpressionWrapper()`` expressions
  367. -----------------------------------
  368. .. class:: ExpressionWrapper(expression, output_field)
  369. ``ExpressionWrapper`` surrounds another expression and provides access to
  370. properties, such as ``output_field``, that may not be available on other
  371. expressions. ``ExpressionWrapper`` is necessary when using arithmetic on
  372. ``F()`` expressions with different types as described in
  373. :ref:`using-f-with-annotations`.
  374. Conditional expressions
  375. -----------------------
  376. Conditional expressions allow you to use :keyword:`if` ... :keyword:`elif` ...
  377. :keyword:`else` logic in queries. Django natively supports SQL ``CASE``
  378. expressions. For more details see :doc:`conditional-expressions`.
  379. ``Subquery()`` expressions
  380. --------------------------
  381. .. class:: Subquery(queryset, output_field=None)
  382. You can add an explicit subquery to a ``QuerySet`` using the ``Subquery``
  383. expression.
  384. For example, to annotate each post with the email address of the author of the
  385. newest comment on that post::
  386. >>> from django.db.models import OuterRef, Subquery
  387. >>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
  388. >>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
  389. On PostgreSQL, the SQL looks like:
  390. .. code-block:: sql
  391. SELECT "post"."id", (
  392. SELECT U0."email"
  393. FROM "comment" U0
  394. WHERE U0."post_id" = ("post"."id")
  395. ORDER BY U0."created_at" DESC LIMIT 1
  396. ) AS "newest_commenter_email" FROM "post"
  397. .. note::
  398. The examples in this section are designed to show how to force
  399. Django to execute a subquery. In some cases it may be possible to
  400. write an equivalent queryset that performs the same task more
  401. clearly or efficiently.
  402. Referencing columns from the outer queryset
  403. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  404. .. class:: OuterRef(field)
  405. Use ``OuterRef`` when a queryset in a ``Subquery`` needs to refer to a field
  406. from the outer query or its transform. It acts like an :class:`F` expression
  407. except that the check to see if it refers to a valid field isn't made until the
  408. outer queryset is resolved.
  409. Instances of ``OuterRef`` may be used in conjunction with nested instances
  410. of ``Subquery`` to refer to a containing queryset that isn't the immediate
  411. parent. For example, this queryset would need to be within a nested pair of
  412. ``Subquery`` instances to resolve correctly::
  413. >>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
  414. .. versionchanged:: 3.2
  415. Support for transforms of the field was added.
  416. Limiting a subquery to a single column
  417. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  418. There are times when a single column must be returned from a ``Subquery``, for
  419. instance, to use a ``Subquery`` as the target of an ``__in`` lookup. To return
  420. all comments for posts published within the last day::
  421. >>> from datetime import timedelta
  422. >>> from django.utils import timezone
  423. >>> one_day_ago = timezone.now() - timedelta(days=1)
  424. >>> posts = Post.objects.filter(published_at__gte=one_day_ago)
  425. >>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
  426. In this case, the subquery must use :meth:`~.QuerySet.values`
  427. to return only a single column: the primary key of the post.
  428. Limiting the subquery to a single row
  429. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  430. To prevent a subquery from returning multiple rows, a slice (``[:1]``) of the
  431. queryset is used::
  432. >>> subquery = Subquery(newest.values('email')[:1])
  433. >>> Post.objects.annotate(newest_commenter_email=subquery)
  434. In this case, the subquery must only return a single column *and* a single
  435. row: the email address of the most recently created comment.
  436. (Using :meth:`~.QuerySet.get` instead of a slice would fail because the
  437. ``OuterRef`` cannot be resolved until the queryset is used within a
  438. ``Subquery``.)
  439. ``Exists()`` subqueries
  440. ~~~~~~~~~~~~~~~~~~~~~~~
  441. .. class:: Exists(queryset)
  442. ``Exists`` is a ``Subquery`` subclass that uses an SQL ``EXISTS`` statement. In
  443. many cases it will perform better than a subquery since the database is able to
  444. stop evaluation of the subquery when a first matching row is found.
  445. For example, to annotate each post with whether or not it has a comment from
  446. within the last day::
  447. >>> from django.db.models import Exists, OuterRef
  448. >>> from datetime import timedelta
  449. >>> from django.utils import timezone
  450. >>> one_day_ago = timezone.now() - timedelta(days=1)
  451. >>> recent_comments = Comment.objects.filter(
  452. ... post=OuterRef('pk'),
  453. ... created_at__gte=one_day_ago,
  454. ... )
  455. >>> Post.objects.annotate(recent_comment=Exists(recent_comments))
  456. On PostgreSQL, the SQL looks like:
  457. .. code-block:: sql
  458. SELECT "post"."id", "post"."published_at", EXISTS(
  459. SELECT (1) as "a"
  460. FROM "comment" U0
  461. WHERE (
  462. U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
  463. U0."post_id" = "post"."id"
  464. )
  465. LIMIT 1
  466. ) AS "recent_comment" FROM "post"
  467. It's unnecessary to force ``Exists`` to refer to a single column, since the
  468. columns are discarded and a boolean result is returned. Similarly, since
  469. ordering is unimportant within an SQL ``EXISTS`` subquery and would only
  470. degrade performance, it's automatically removed.
  471. You can query using ``NOT EXISTS`` with ``~Exists()``.
  472. Filtering on a ``Subquery()`` or ``Exists()`` expressions
  473. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  474. ``Subquery()`` that returns a boolean value and ``Exists()`` may be used as a
  475. ``condition`` in :class:`~django.db.models.expressions.When` expressions, or to
  476. directly filter a queryset::
  477. >>> recent_comments = Comment.objects.filter(...) # From above
  478. >>> Post.objects.filter(Exists(recent_comments))
  479. This will ensure that the subquery will not be added to the ``SELECT`` columns,
  480. which may result in a better performance.
  481. Using aggregates within a ``Subquery`` expression
  482. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  483. Aggregates may be used within a ``Subquery``, but they require a specific
  484. combination of :meth:`~.QuerySet.filter`, :meth:`~.QuerySet.values`, and
  485. :meth:`~.QuerySet.annotate` to get the subquery grouping correct.
  486. Assuming both models have a ``length`` field, to find posts where the post
  487. length is greater than the total length of all combined comments::
  488. >>> from django.db.models import OuterRef, Subquery, Sum
  489. >>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
  490. >>> total_comments = comments.annotate(total=Sum('length')).values('total')
  491. >>> Post.objects.filter(length__gt=Subquery(total_comments))
  492. The initial ``filter(...)`` limits the subquery to the relevant parameters.
  493. ``order_by()`` removes the default :attr:`~django.db.models.Options.ordering`
  494. (if any) on the ``Comment`` model. ``values('post')`` aggregates comments by
  495. ``Post``. Finally, ``annotate(...)`` performs the aggregation. The order in
  496. which these queryset methods are applied is important. In this case, since the
  497. subquery must be limited to a single column, ``values('total')`` is required.
  498. This is the only way to perform an aggregation within a ``Subquery``, as
  499. using :meth:`~.QuerySet.aggregate` attempts to evaluate the queryset (and if
  500. there is an ``OuterRef``, this will not be possible to resolve).
  501. Raw SQL expressions
  502. -------------------
  503. .. currentmodule:: django.db.models.expressions
  504. .. class:: RawSQL(sql, params, output_field=None)
  505. Sometimes database expressions can't easily express a complex ``WHERE`` clause.
  506. In these edge cases, use the ``RawSQL`` expression. For example::
  507. >>> from django.db.models.expressions import RawSQL
  508. >>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (param,)))
  509. These extra lookups may not be portable to different database engines (because
  510. you're explicitly writing SQL code) and violate the DRY principle, so you
  511. should avoid them if possible.
  512. ``RawSQL`` expressions can also be used as the target of ``__in`` filters::
  513. >>> queryset.filter(id__in=RawSQL("select id from sometable where col = %s", (param,)))
  514. .. warning::
  515. To protect against `SQL injection attacks
  516. <https://en.wikipedia.org/wiki/SQL_injection>`_, you must escape any
  517. parameters that the user can control by using ``params``. ``params`` is a
  518. required argument to force you to acknowledge that you're not interpolating
  519. your SQL with user-provided data.
  520. You also must not quote placeholders in the SQL string. This example is
  521. vulnerable to SQL injection because of the quotes around ``%s``::
  522. RawSQL("select col from sometable where othercol = '%s'") # unsafe!
  523. You can read more about how Django's :ref:`SQL injection protection
  524. <sql-injection-protection>` works.
  525. Window functions
  526. ----------------
  527. Window functions provide a way to apply functions on partitions. Unlike a
  528. normal aggregation function which computes a final result for each set defined
  529. by the group by, window functions operate on :ref:`frames <window-frames>` and
  530. partitions, and compute the result for each row.
  531. You can specify multiple windows in the same query which in Django ORM would be
  532. equivalent to including multiple expressions in a :doc:`QuerySet.annotate()
  533. </topics/db/aggregation>` call. The ORM doesn't make use of named windows,
  534. instead they are part of the selected columns.
  535. .. class:: Window(expression, partition_by=None, order_by=None, frame=None, output_field=None)
  536. .. attribute:: filterable
  537. Defaults to ``False``. The SQL standard disallows referencing window
  538. functions in the ``WHERE`` clause and Django raises an exception when
  539. constructing a ``QuerySet`` that would do that.
  540. .. attribute:: template
  541. Defaults to ``%(expression)s OVER (%(window)s)'``. If only the
  542. ``expression`` argument is provided, the window clause will be blank.
  543. The ``Window`` class is the main expression for an ``OVER`` clause.
  544. The ``expression`` argument is either a :ref:`window function
  545. <window-functions>`, an :ref:`aggregate function <aggregation-functions>`, or
  546. an expression that's compatible in a window clause.
  547. The ``partition_by`` argument is a list of expressions (column names should be
  548. wrapped in an ``F``-object) that control the partitioning of the rows.
  549. Partitioning narrows which rows are used to compute the result set.
  550. The ``output_field`` is specified either as an argument or by the expression.
  551. The ``order_by`` argument accepts a sequence of expressions on which you can
  552. call :meth:`~django.db.models.Expression.asc` and
  553. :meth:`~django.db.models.Expression.desc`. The ordering controls the order in
  554. which the expression is applied. For example, if you sum over the rows in a
  555. partition, the first result is the value of the first row, the second is the
  556. sum of first and second row.
  557. The ``frame`` parameter specifies which other rows that should be used in the
  558. computation. See :ref:`window-frames` for details.
  559. For example, to annotate each movie with the average rating for the movies by
  560. the same studio in the same genre and release year::
  561. >>> from django.db.models import Avg, F, Window
  562. >>> from django.db.models.functions import ExtractYear
  563. >>> Movie.objects.annotate(
  564. >>> avg_rating=Window(
  565. >>> expression=Avg('rating'),
  566. >>> partition_by=[F('studio'), F('genre')],
  567. >>> order_by=ExtractYear('released').asc(),
  568. >>> ),
  569. >>> )
  570. This allows you to check if a movie is rated better or worse than its peers.
  571. You may want to apply multiple expressions over the same window, i.e., the
  572. same partition and frame. For example, you could modify the previous example
  573. to also include the best and worst rating in each movie's group (same studio,
  574. genre, and release year) by using three window functions in the same query. The
  575. partition and ordering from the previous example is extracted into a dictionary
  576. to reduce repetition::
  577. >>> from django.db.models import Avg, F, Max, Min, Window
  578. >>> from django.db.models.functions import ExtractYear
  579. >>> window = {
  580. >>> 'partition_by': [F('studio'), F('genre')],
  581. >>> 'order_by': ExtractYear('released').asc(),
  582. >>> }
  583. >>> Movie.objects.annotate(
  584. >>> avg_rating=Window(
  585. >>> expression=Avg('rating'), **window,
  586. >>> ),
  587. >>> best=Window(
  588. >>> expression=Max('rating'), **window,
  589. >>> ),
  590. >>> worst=Window(
  591. >>> expression=Min('rating'), **window,
  592. >>> ),
  593. >>> )
  594. Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
  595. support window expressions. Support for different window expression features
  596. varies among the different databases. For example, the options in
  597. :meth:`~django.db.models.Expression.asc` and
  598. :meth:`~django.db.models.Expression.desc` may not be supported. Consult the
  599. documentation for your database as needed.
  600. .. _window-frames:
  601. Frames
  602. ~~~~~~
  603. For a window frame, you can choose either a range-based sequence of rows or an
  604. ordinary sequence of rows.
  605. .. class:: ValueRange(start=None, end=None)
  606. .. attribute:: frame_type
  607. This attribute is set to ``'RANGE'``.
  608. PostgreSQL has limited support for ``ValueRange`` and only supports use of
  609. the standard start and end points, such as ``CURRENT ROW`` and ``UNBOUNDED
  610. FOLLOWING``.
  611. .. class:: RowRange(start=None, end=None)
  612. .. attribute:: frame_type
  613. This attribute is set to ``'ROWS'``.
  614. Both classes return SQL with the template::
  615. %(frame_type)s BETWEEN %(start)s AND %(end)s
  616. Frames narrow the rows that are used for computing the result. They shift from
  617. some start point to some specified end point. Frames can be used with and
  618. without partitions, but it's often a good idea to specify an ordering of the
  619. window to ensure a deterministic result. In a frame, a peer in a frame is a row
  620. with an equivalent value, or all rows if an ordering clause isn't present.
  621. The default starting point for a frame is ``UNBOUNDED PRECEDING`` which is the
  622. first row of the partition. The end point is always explicitly included in the
  623. SQL generated by the ORM and is by default ``UNBOUNDED FOLLOWING``. The default
  624. frame includes all rows from the partition to the last row in the set.
  625. The accepted values for the ``start`` and ``end`` arguments are ``None``, an
  626. integer, or zero. A negative integer for ``start`` results in ``N preceding``,
  627. while ``None`` yields ``UNBOUNDED PRECEDING``. For both ``start`` and ``end``,
  628. zero will return ``CURRENT ROW``. Positive integers are accepted for ``end``.
  629. There's a difference in what ``CURRENT ROW`` includes. When specified in
  630. ``ROWS`` mode, the frame starts or ends with the current row. When specified in
  631. ``RANGE`` mode, the frame starts or ends at the first or last peer according to
  632. the ordering clause. Thus, ``RANGE CURRENT ROW`` evaluates the expression for
  633. rows which have the same value specified by the ordering. Because the template
  634. includes both the ``start`` and ``end`` points, this may be expressed with::
  635. ValueRange(start=0, end=0)
  636. If a movie's "peers" are described as movies released by the same studio in the
  637. same genre in the same year, this ``RowRange`` example annotates each movie
  638. with the average rating of a movie's two prior and two following peers::
  639. >>> from django.db.models import Avg, F, RowRange, Window
  640. >>> from django.db.models.functions import ExtractYear
  641. >>> Movie.objects.annotate(
  642. >>> avg_rating=Window(
  643. >>> expression=Avg('rating'),
  644. >>> partition_by=[F('studio'), F('genre')],
  645. >>> order_by=ExtractYear('released').asc(),
  646. >>> frame=RowRange(start=-2, end=2),
  647. >>> ),
  648. >>> )
  649. If the database supports it, you can specify the start and end points based on
  650. values of an expression in the partition. If the ``released`` field of the
  651. ``Movie`` model stores the release month of each movies, this ``ValueRange``
  652. example annotates each movie with the average rating of a movie's peers
  653. released between twelve months before and twelve months after the each movie.
  654. >>> from django.db.models import Avg, F, ValueRange, Window
  655. >>> Movie.objects.annotate(
  656. >>> avg_rating=Window(
  657. >>> expression=Avg('rating'),
  658. >>> partition_by=[F('studio'), F('genre')],
  659. >>> order_by=F('released').asc(),
  660. >>> frame=ValueRange(start=-12, end=12),
  661. >>> ),
  662. >>> )
  663. .. currentmodule:: django.db.models
  664. Technical Information
  665. =====================
  666. Below you'll find technical implementation details that may be useful to
  667. library authors. The technical API and examples below will help with
  668. creating generic query expressions that can extend the built-in functionality
  669. that Django provides.
  670. Expression API
  671. --------------
  672. Query expressions implement the :ref:`query expression API <query-expression>`,
  673. but also expose a number of extra methods and attributes listed below. All
  674. query expressions must inherit from ``Expression()`` or a relevant
  675. subclass.
  676. When a query expression wraps another expression, it is responsible for
  677. calling the appropriate methods on the wrapped expression.
  678. .. class:: Expression
  679. .. attribute:: contains_aggregate
  680. Tells Django that this expression contains an aggregate and that a
  681. ``GROUP BY`` clause needs to be added to the query.
  682. .. attribute:: contains_over_clause
  683. Tells Django that this expression contains a
  684. :class:`~django.db.models.expressions.Window` expression. It's used,
  685. for example, to disallow window function expressions in queries that
  686. modify data.
  687. .. attribute:: filterable
  688. Tells Django that this expression can be referenced in
  689. :meth:`.QuerySet.filter`. Defaults to ``True``.
  690. .. attribute:: window_compatible
  691. Tells Django that this expression can be used as the source expression
  692. in :class:`~django.db.models.expressions.Window`. Defaults to
  693. ``False``.
  694. .. method:: resolve_expression(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)
  695. Provides the chance to do any pre-processing or validation of
  696. the expression before it's added to the query. ``resolve_expression()``
  697. must also be called on any nested expressions. A ``copy()`` of ``self``
  698. should be returned with any necessary transformations.
  699. ``query`` is the backend query implementation.
  700. ``allow_joins`` is a boolean that allows or denies the use of
  701. joins in the query.
  702. ``reuse`` is a set of reusable joins for multi-join scenarios.
  703. ``summarize`` is a boolean that, when ``True``, signals that the
  704. query being computed is a terminal aggregate query.
  705. ``for_save`` is a boolean that, when ``True``, signals that the query
  706. being executed is performing a create or update.
  707. .. method:: get_source_expressions()
  708. Returns an ordered list of inner expressions. For example::
  709. >>> Sum(F('foo')).get_source_expressions()
  710. [F('foo')]
  711. .. method:: set_source_expressions(expressions)
  712. Takes a list of expressions and stores them such that
  713. ``get_source_expressions()`` can return them.
  714. .. method:: relabeled_clone(change_map)
  715. Returns a clone (copy) of ``self``, with any column aliases relabeled.
  716. Column aliases are renamed when subqueries are created.
  717. ``relabeled_clone()`` should also be called on any nested expressions
  718. and assigned to the clone.
  719. ``change_map`` is a dictionary mapping old aliases to new aliases.
  720. Example::
  721. def relabeled_clone(self, change_map):
  722. clone = copy.copy(self)
  723. clone.expression = self.expression.relabeled_clone(change_map)
  724. return clone
  725. .. method:: convert_value(value, expression, connection)
  726. A hook allowing the expression to coerce ``value`` into a more
  727. appropriate type.
  728. ``expression`` is the same as ``self``.
  729. .. method:: get_group_by_cols(alias=None)
  730. Responsible for returning the list of columns references by
  731. this expression. ``get_group_by_cols()`` should be called on any
  732. nested expressions. ``F()`` objects, in particular, hold a reference
  733. to a column. The ``alias`` parameter will be ``None`` unless the
  734. expression has been annotated and is used for grouping.
  735. .. method:: asc(nulls_first=False, nulls_last=False)
  736. Returns the expression ready to be sorted in ascending order.
  737. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  738. See :ref:`using-f-to-sort-null-values` for example usage.
  739. .. method:: desc(nulls_first=False, nulls_last=False)
  740. Returns the expression ready to be sorted in descending order.
  741. ``nulls_first`` and ``nulls_last`` define how null values are sorted.
  742. See :ref:`using-f-to-sort-null-values` for example usage.
  743. .. method:: reverse_ordering()
  744. Returns ``self`` with any modifications required to reverse the sort
  745. order within an ``order_by`` call. As an example, an expression
  746. implementing ``NULLS LAST`` would change its value to be
  747. ``NULLS FIRST``. Modifications are only required for expressions that
  748. implement sort order like ``OrderBy``. This method is called when
  749. :meth:`~django.db.models.query.QuerySet.reverse()` is called on a
  750. queryset.
  751. Writing your own Query Expressions
  752. ----------------------------------
  753. You can write your own query expression classes that use, and can integrate
  754. with, other query expressions. Let's step through an example by writing an
  755. implementation of the ``COALESCE`` SQL function, without using the built-in
  756. :ref:`Func() expressions <func-expressions>`.
  757. The ``COALESCE`` SQL function is defined as taking a list of columns or
  758. values. It will return the first column or value that isn't ``NULL``.
  759. We'll start by defining the template to be used for SQL generation and
  760. an ``__init__()`` method to set some attributes::
  761. import copy
  762. from django.db.models import Expression
  763. class Coalesce(Expression):
  764. template = 'COALESCE( %(expressions)s )'
  765. def __init__(self, expressions, output_field):
  766. super().__init__(output_field=output_field)
  767. if len(expressions) < 2:
  768. raise ValueError('expressions must have at least 2 elements')
  769. for expression in expressions:
  770. if not hasattr(expression, 'resolve_expression'):
  771. raise TypeError('%r is not an Expression' % expression)
  772. self.expressions = expressions
  773. We do some basic validation on the parameters, including requiring at least
  774. 2 columns or values, and ensuring they are expressions. We are requiring
  775. ``output_field`` here so that Django knows what kind of model field to assign
  776. the eventual result to.
  777. Now we implement the pre-processing and validation. Since we do not have
  778. any of our own validation at this point, we delegate to the nested
  779. expressions::
  780. def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
  781. c = self.copy()
  782. c.is_summary = summarize
  783. for pos, expression in enumerate(self.expressions):
  784. c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
  785. return c
  786. Next, we write the method responsible for generating the SQL::
  787. def as_sql(self, compiler, connection, template=None):
  788. sql_expressions, sql_params = [], []
  789. for expression in self.expressions:
  790. sql, params = compiler.compile(expression)
  791. sql_expressions.append(sql)
  792. sql_params.extend(params)
  793. template = template or self.template
  794. data = {'expressions': ','.join(sql_expressions)}
  795. return template % data, sql_params
  796. def as_oracle(self, compiler, connection):
  797. """
  798. Example of vendor specific handling (Oracle in this case).
  799. Let's make the function name lowercase.
  800. """
  801. return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
  802. ``as_sql()`` methods can support custom keyword arguments, allowing
  803. ``as_vendorname()`` methods to override data used to generate the SQL string.
  804. Using ``as_sql()`` keyword arguments for customization is preferable to
  805. mutating ``self`` within ``as_vendorname()`` methods as the latter can lead to
  806. errors when running on different database backends. If your class relies on
  807. class attributes to define data, consider allowing overrides in your
  808. ``as_sql()`` method.
  809. We generate the SQL for each of the ``expressions`` by using the
  810. ``compiler.compile()`` method, and join the result together with commas.
  811. Then the template is filled out with our data and the SQL and parameters
  812. are returned.
  813. We've also defined a custom implementation that is specific to the Oracle
  814. backend. The ``as_oracle()`` function will be called instead of ``as_sql()``
  815. if the Oracle backend is in use.
  816. Finally, we implement the rest of the methods that allow our query expression
  817. to play nice with other query expressions::
  818. def get_source_expressions(self):
  819. return self.expressions
  820. def set_source_expressions(self, expressions):
  821. self.expressions = expressions
  822. Let's see how it works::
  823. >>> from django.db.models import F, Value, CharField
  824. >>> qs = Company.objects.annotate(
  825. ... tagline=Coalesce([
  826. ... F('motto'),
  827. ... F('ticker_name'),
  828. ... F('description'),
  829. ... Value('No Tagline')
  830. ... ], output_field=CharField()))
  831. >>> for c in qs:
  832. ... print("%s: %s" % (c.name, c.tagline))
  833. ...
  834. Google: Do No Evil
  835. Apple: AAPL
  836. Yahoo: Internet Company
  837. Django Software Foundation: No Tagline
  838. .. _avoiding-sql-injection-in-query-expressions:
  839. Avoiding SQL injection
  840. ~~~~~~~~~~~~~~~~~~~~~~
  841. Since a ``Func``'s keyword arguments for ``__init__()`` (``**extra``) and
  842. ``as_sql()`` (``**extra_context``) are interpolated into the SQL string rather
  843. than passed as query parameters (where the database driver would escape them),
  844. they must not contain untrusted user input.
  845. For example, if ``substring`` is user-provided, this function is vulnerable to
  846. SQL injection::
  847. from django.db.models import Func
  848. class Position(Func):
  849. function = 'POSITION'
  850. template = "%(function)s('%(substring)s' in %(expressions)s)"
  851. def __init__(self, expression, substring):
  852. # substring=substring is an SQL injection vulnerability!
  853. super().__init__(expression, substring=substring)
  854. This function generates an SQL string without any parameters. Since
  855. ``substring`` is passed to ``super().__init__()`` as a keyword argument, it's
  856. interpolated into the SQL string before the query is sent to the database.
  857. Here's a corrected rewrite::
  858. class Position(Func):
  859. function = 'POSITION'
  860. arg_joiner = ' IN '
  861. def __init__(self, expression, substring):
  862. super().__init__(substring, expression)
  863. With ``substring`` instead passed as a positional argument, it'll be passed as
  864. a parameter in the database query.
  865. Adding support in third-party database backends
  866. -----------------------------------------------
  867. If you're using a database backend that uses a different SQL syntax for a
  868. certain function, you can add support for it by monkey patching a new method
  869. onto the function's class.
  870. Let's say we're writing a backend for Microsoft's SQL Server which uses the SQL
  871. ``LEN`` instead of ``LENGTH`` for the :class:`~functions.Length` function.
  872. We'll monkey patch a new method called ``as_sqlserver()`` onto the ``Length``
  873. class::
  874. from django.db.models.functions import Length
  875. def sqlserver_length(self, compiler, connection):
  876. return self.as_sql(compiler, connection, function='LEN')
  877. Length.as_sqlserver = sqlserver_length
  878. You can also customize the SQL using the ``template`` parameter of ``as_sql()``.
  879. We use ``as_sqlserver()`` because ``django.db.connection.vendor`` returns
  880. ``sqlserver`` for the backend.
  881. Third-party backends can register their functions in the top level
  882. ``__init__.py`` file of the backend package or in a top level ``expressions.py``
  883. file (or package) that is imported from the top level ``__init__.py``.
  884. For user projects wishing to patch the backend that they're using, this code
  885. should live in an :meth:`AppConfig.ready()<django.apps.AppConfig.ready>` method.