# lru_cache.py -- Simple LRU cache for dulwich # Copyright (C) 2006, 2008 Canonical Ltd # Copyright (C) 2022 Jelmer Vernooij # # SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later # Dulwich is dual-licensed under the Apache License, Version 2.0 and the GNU # General Public License as public by the Free Software Foundation; version 2.0 # or (at your option) any later version. You can redistribute it and/or # modify it under the terms of either of these two licenses. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # You should have received a copy of the licenses; if not, see # for a copy of the GNU General Public License # and for a copy of the Apache # License, Version 2.0. # """A simple least-recently-used (LRU) cache.""" from collections.abc import Iterable, Iterator from typing import Callable, Generic, Optional, TypeVar _null_key = object() K = TypeVar("K") V = TypeVar("V") class _LRUNode(Generic[K, V]): """This maintains the linked-list which is the lru internals.""" __slots__ = ("cleanup", "key", "next_key", "prev", "size", "value") prev: Optional["_LRUNode[K, V]"] next_key: K size: Optional[int] def __init__(self, key: K, value: V, cleanup=None) -> None: self.prev = None self.next_key = _null_key # type: ignore self.key = key self.value = value self.cleanup = cleanup # TODO: We could compute this 'on-the-fly' like we used to, and remove # one pointer from this object, we just need to decide if it # actually costs us much of anything in normal usage self.size = None def __repr__(self) -> str: if self.prev is None: prev_key = None else: prev_key = self.prev.key return f"{self.__class__.__name__}({self.key!r} n:{self.next_key!r} p:{prev_key!r})" def run_cleanup(self) -> None: if self.cleanup is not None: self.cleanup(self.key, self.value) self.cleanup = None # Just make sure to break any refcycles, etc del self.value class LRUCache(Generic[K, V]): """A class which manages a cache of entries, removing unused ones.""" _least_recently_used: Optional[_LRUNode[K, V]] _most_recently_used: Optional[_LRUNode[K, V]] def __init__( self, max_cache: int = 100, after_cleanup_count: Optional[int] = None ) -> None: self._cache: dict[K, _LRUNode[K, V]] = {} # The "HEAD" of the lru linked list self._most_recently_used = None # The "TAIL" of the lru linked list self._least_recently_used = None self._update_max_cache(max_cache, after_cleanup_count) def __contains__(self, key: K) -> bool: return key in self._cache def __getitem__(self, key: K) -> V: cache = self._cache node = cache[key] # Inlined from _record_access to decrease the overhead of __getitem__ # We also have more knowledge about structure if __getitem__ is # succeeding, then we know that self._most_recently_used must not be # None, etc. mru = self._most_recently_used if node is mru: # Nothing to do, this node is already at the head of the queue return node.value # Remove this node from the old location node_prev = node.prev next_key = node.next_key # benchmarking shows that the lookup of _null_key in globals is faster # than the attribute lookup for (node is self._least_recently_used) if next_key is _null_key: # 'node' is the _least_recently_used, because it doesn't have a # 'next' item. So move the current lru to the previous node. self._least_recently_used = node_prev else: node_next = cache[next_key] node_next.prev = node_prev assert node_prev assert mru node_prev.next_key = next_key # Insert this node at the front of the list node.next_key = mru.key mru.prev = node self._most_recently_used = node node.prev = None return node.value def __len__(self) -> int: return len(self._cache) def _walk_lru(self) -> Iterator[_LRUNode[K, V]]: """Walk the LRU list, only meant to be used in tests.""" node = self._most_recently_used if node is not None: if node.prev is not None: raise AssertionError( "the _most_recently_used entry is not" " supposed to have a previous entry" f" {node}" ) while node is not None: if node.next_key is _null_key: if node is not self._least_recently_used: raise AssertionError( f"only the last node should have no next value: {node}" ) node_next = None else: node_next = self._cache[node.next_key] if node_next.prev is not node: raise AssertionError( f"inconsistency found, node.next.prev != node: {node}" ) if node.prev is None: if node is not self._most_recently_used: raise AssertionError( "only the _most_recently_used should" f" not have a previous node: {node}" ) else: if node.prev.next_key != node.key: raise AssertionError( f"inconsistency found, node.prev.next != node: {node}" ) yield node node = node_next def add( self, key: K, value: V, cleanup: Optional[Callable[[K, V], None]] = None ) -> None: """Add a new value to the cache. Also, if the entry is ever removed from the cache, call cleanup(key, value). Args: key: The key to store it under value: The object to store cleanup: None or a function taking (key, value) to indicate 'value' should be cleaned up. """ if key is _null_key: raise ValueError("cannot use _null_key as a key") if key in self._cache: node = self._cache[key] node.run_cleanup() node.value = value node.cleanup = cleanup else: node = _LRUNode(key, value, cleanup=cleanup) self._cache[key] = node self._record_access(node) if len(self._cache) > self._max_cache: # Trigger the cleanup self.cleanup() def cache_size(self) -> int: """Get the number of entries we will cache.""" return self._max_cache def get(self, key: K, default: Optional[V] = None) -> Optional[V]: node = self._cache.get(key, None) if node is None: return default self._record_access(node) return node.value def keys(self) -> Iterable[K]: """Get the list of keys currently cached. Note that values returned here may not be available by the time you request them later. This is simply meant as a peak into the current state. Returns: An unordered list of keys that are currently cached. """ return self._cache.keys() def items(self) -> dict[K, V]: """Get the key:value pairs as a dict.""" return {k: n.value for k, n in self._cache.items()} def cleanup(self) -> None: """Clear the cache until it shrinks to the requested size. This does not completely wipe the cache, just makes sure it is under the after_cleanup_count. """ # Make sure the cache is shrunk to the correct size while len(self._cache) > self._after_cleanup_count: self._remove_lru() def __setitem__(self, key: K, value: V) -> None: """Add a value to the cache, there will be no cleanup function.""" self.add(key, value, cleanup=None) def _record_access(self, node: _LRUNode[K, V]) -> None: """Record that key was accessed.""" # Move 'node' to the front of the queue if self._most_recently_used is None: self._most_recently_used = node self._least_recently_used = node return elif node is self._most_recently_used: # Nothing to do, this node is already at the head of the queue return # We've taken care of the tail pointer, remove the node, and insert it # at the front # REMOVE if node is self._least_recently_used: self._least_recently_used = node.prev if node.prev is not None: node.prev.next_key = node.next_key if node.next_key is not _null_key: node_next = self._cache[node.next_key] node_next.prev = node.prev # INSERT node.next_key = self._most_recently_used.key self._most_recently_used.prev = node self._most_recently_used = node node.prev = None def _remove_node(self, node: _LRUNode[K, V]) -> None: if node is self._least_recently_used: self._least_recently_used = node.prev self._cache.pop(node.key) # If we have removed all entries, remove the head pointer as well if self._least_recently_used is None: self._most_recently_used = None node.run_cleanup() # Now remove this node from the linked list if node.prev is not None: node.prev.next_key = node.next_key if node.next_key is not _null_key: node_next = self._cache[node.next_key] node_next.prev = node.prev # And remove this node's pointers node.prev = None node.next_key = _null_key # type: ignore def _remove_lru(self) -> None: """Remove one entry from the lru, and handle consequences. If there are no more references to the lru, then this entry should be removed from the cache. """ assert self._least_recently_used self._remove_node(self._least_recently_used) def clear(self) -> None: """Clear out all of the cache.""" # Clean up in LRU order while self._cache: self._remove_lru() def resize(self, max_cache: int, after_cleanup_count: Optional[int] = None) -> None: """Change the number of entries that will be cached.""" self._update_max_cache(max_cache, after_cleanup_count=after_cleanup_count) def _update_max_cache(self, max_cache, after_cleanup_count=None) -> None: self._max_cache = max_cache if after_cleanup_count is None: self._after_cleanup_count = self._max_cache * 8 / 10 else: self._after_cleanup_count = min(after_cleanup_count, self._max_cache) self.cleanup() class LRUSizeCache(LRUCache[K, V]): """An LRUCache that removes things based on the size of the values. This differs in that it doesn't care how many actual items there are, it just restricts the cache to be cleaned up after so much data is stored. The size of items added will be computed using compute_size(value), which defaults to len() if not supplied. """ _compute_size: Callable[[V], int] def __init__( self, max_size: int = 1024 * 1024, after_cleanup_size: Optional[int] = None, compute_size: Optional[Callable[[V], int]] = None, ) -> None: """Create a new LRUSizeCache. Args: max_size: The max number of bytes to store before we start clearing out entries. after_cleanup_size: After cleaning up, shrink everything to this size. compute_size: A function to compute the size of the values. We use a function here, so that you can pass 'len' if you are just using simple strings, or a more complex function if you are using something like a list of strings, or even a custom object. The function should take the form "compute_size(value) => integer". If not supplied, it defaults to 'len()' """ self._value_size = 0 if compute_size is None: self._compute_size = len # type: ignore else: self._compute_size = compute_size self._update_max_size(max_size, after_cleanup_size=after_cleanup_size) LRUCache.__init__(self, max_cache=max(int(max_size / 512), 1)) def add( self, key: K, value: V, cleanup: Optional[Callable[[K, V], None]] = None ) -> None: """Add a new value to the cache. Also, if the entry is ever removed from the cache, call cleanup(key, value). Args: key: The key to store it under value: The object to store cleanup: None or a function taking (key, value) to indicate 'value' should be cleaned up. """ if key is _null_key: raise ValueError("cannot use _null_key as a key") node = self._cache.get(key, None) value_len = self._compute_size(value) if value_len >= self._after_cleanup_size: # The new value is 'too big to fit', as it would fill up/overflow # the cache all by itself if node is not None: # We won't be replacing the old node, so just remove it self._remove_node(node) if cleanup is not None: cleanup(key, value) return if node is None: node = _LRUNode(key, value, cleanup=cleanup) self._cache[key] = node else: assert node.size is not None self._value_size -= node.size node.size = value_len self._value_size += value_len self._record_access(node) if self._value_size > self._max_size: # Time to cleanup self.cleanup() def cleanup(self) -> None: """Clear the cache until it shrinks to the requested size. This does not completely wipe the cache, just makes sure it is under the after_cleanup_size. """ # Make sure the cache is shrunk to the correct size while self._value_size > self._after_cleanup_size: self._remove_lru() def _remove_node(self, node: _LRUNode[K, V]) -> None: assert node.size is not None self._value_size -= node.size LRUCache._remove_node(self, node) def resize(self, max_size: int, after_cleanup_size: Optional[int] = None) -> None: """Change the number of bytes that will be cached.""" self._update_max_size(max_size, after_cleanup_size=after_cleanup_size) max_cache = max(int(max_size / 512), 1) self._update_max_cache(max_cache) def _update_max_size( self, max_size: int, after_cleanup_size: Optional[int] = None ) -> None: self._max_size = max_size if after_cleanup_size is None: self._after_cleanup_size = self._max_size * 8 // 10 else: self._after_cleanup_size = min(after_cleanup_size, self._max_size)